
MINT™ Programming Guide

FOR: SMARTMOVE
SMARTSTEP
EUROSYSTEM
EUROSERVO
EUROSTEP

MN12607/98

i7/98

MINT™ Programming Guide

For: SmartMove
SmartStep
EuroSystem
EuroServo
EuroStep

MN1260

ii 7/98

Copyright Optimized Control Ltd 1988-97.

All rights reserved.

This manual is copyrighted and all rights are reserved. This document may not,in
whole or in part,be copied or reproduced in any form without the prior written
consent of Baldor Optimized Control.

Baldor Optimized Control makes no representations or warranties with respect to
the contents hereof and specifically disclaims any implied warranties of fitness for
any particular purpose. The information in this document is subject to change
without notice. Baldor Optimized Control assumes no responsibility for any errors
that may appear in this document.

MINT™ is a registered trademark of Baldor Optimized Control Ltd.

Baldor Optimized Control Ltd
178-180 Hotwell Road
Bristol
BS8 4RP
U.K.

Baldor Electric Company
Telephone: +1 501 646 4711
Fax: +1 501 648 5792
email: sales@baldor.com

Telephone: +44 (0)117 987 3100
Fax: +44 (0)117 987 3101
email: sales@baldor.co.uk
web site: www.baldor.co.uk

Baldor ASR GmbH
Telephone: +49 (0)89 90508-0
Fax: +49 (0)89 90508-492

Baldor ASR AG
Telephone: +41 (0)52 647 4700
Fax: +41 (0)52 659 2394

Australian Baldor Pty Ltd
Telephone: +61 2 9674 5455
Fax: +61 2 9674 2495

Baldor Electric (F.E.) Pte Ltd
Telephone: +65 744 2572
Fax: +65 747 1708

MN1260

iii7/98

Technical Support

When asking for technical support regarding software, please make sure you have the
following information available:

• The controller name.

• RS232 or RS485 serial communications used.

• Version of MINT. This can be found by typing VER at the command line or by
reading the EPROM label.

MN1260

SCALE/SF

Purpose:

To set all encoder/step driven variables (e.g. SPEED, POS) to user defined units.

Format:
SCALE[axes] = <expr> {,<expr> ...}
v = SCALE[axis]

Abbr. Read Write Command Multi-Axis Scaled Default Range

SF ❑ ❑ ❑ ❑ 1 1 to 32000

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SMM/1 SMM/2 SMM/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

...

iv 7/98

Preface

This manual describes how to use the MINT™ motion programming language for the
servo and stepper positioning controllers. Rudimentary knowledge of the Basic
programming language is recommended, but not absolutely necessary before reading this
text.

Some of the programs listed are available on the Applications and Utilities Diskette. The
file name will be given above the listing along with a disk icon <.

Keywords are shown with the following format. For example:

MN1260

v7/98

Where the following rules apply:

• Many keywords accept an abbreviation. This is shown by full/abbreviated, for
example SCALE/SF where SCALE is the full keyword and SF its abbreviation.

• Words in capital letters are keywords (for example SCALE above) and must be entered
as shown, except that they can be entered in any combination of upper and lower
case.

For example:

scale = 10
Scale = 20

SCALE = 30

• You are asked to supply any items shown in lower case letters between angled
brackets. Where the term <expression> or <condition> is used, this refers to a
variable, constant or other valid numeric expression. For example:

a * b / c

a

POS < 100

• Items in curly brackets { } are optional. For the example above:

SCALE[axes] = <expr> {,<expr> ...}

the following are all valid syntax:

SCALE = 1

SCALE = 10,10
SCALE[0,1,2] = 20,30,40

SCALE.1 = 100

The dots “...” signify that more expressions or statements can follow.

• [axes] can be replaced by any valid axis string. For example:

SCALE[1] = 10

SCALE[0,1] = 10,20
SCALE = 10,20

SCALE.2 = 100

• All punctuation except curly brackets must be included as shown.

• Sections of code are expressed as shown. They would normally be entered into a
program and executed.

SPEED.1 = 100

MOVEA.1 = 200

GO.1

MN1260

vi 7/98MN1260

The table shows various attributes of the keyword:

Abbr Keyword abbreviation.

Read If the keyword is readable.

Write If the keyword is writable.

Command If the keyword is a command.

Multi-axis If the keyword applies to more than one axis.

Scaled If the values written to or read from the keyword are scaled by the
scaling factor SCALE.

Default Default value for a writable variable

Range Numeric range of the keyword. Please note this range is given for a
SCALE factor of 1 only. If the number is followed by .0, this implies
that the keyword will accept fractional numbers.

Process MINT Process MINT firmware option supporting cam profiling, flying
shears and extended software gearboxes.

Interpolation Interpolation MINT firmware option supporting circular interpolation

MINT/3.28 Host controlled firmware option.

Servo Keyword applies to a servo axis

Stepper Keyword applies to a stepper axis

ES/D EuroSystem: 2 axis servo/3 axis stepper

ES/S EuroStep: 3 axis stepper

ES/M3 EuroServo: 3 axis servo

SMM/1 SmartMove/1; bookcase format 1 axis servo controller

SMM/2 SmartMove/2; bookcase format 2 axis servo controller

SMM/3 SmartMove/3; bookcase format 3 axis servo controller

SMS/1 SmartSystem/1: 1 axis servo boxed unit

SMS/2 SmartSystem/2: 2 axis servo boxed unit

SMS/3 SmartSystem/3: 3 axis servo boxed unit

SST/3 SmartStep: 3 axis stepper with integral drives

ESTE/D EuroSystem/STE: 2 axis servo/3 axis stepper STE controller

ESTE/S EuroStep/STE: 3 axis STE controller

vii7/98

SmartMove Controllers
SmartMove is a new addition to the manual. Where it is not represented in the controller
table, it should be considered to be functionally equivalent to SmartSystem/3.

Stepper Only Controllers
Stepper only controllers use a subset of the MINT™ Programming Language. All
references to servo systems will be marked and should be ignored.

Related Manuals
Refer to Manuals and Software for MINT Products on page 15-1.

Updates from Issue 11 to Issue 12
The MINT Programming Manual has been updated to include a number of new keywords
which have been introduced into esMINT v2.65 and above. At the time of writing, the
version of MINT is esMINT v2.71.

• esMINT v2.71 and above supports an OFFSET move on a FLY move.

• A deceleration parameter using the new DECEL keyword can be applied to a
positional move or JOG. Both the acceleration and deceleration can now also be
changed on the fly. In order to maintain backwards compatibility, the deceleration
term must be ‘switched on’ using the new AXISCON keyword.

• The new FASTENC keyword latches the ENCODER position on a fast interrupt. This
can be useful in situations where the position of a rotary knife, for example, is
required.

• Data capture routines are used to capture data such as following error and axis
velocity for display on a software oscilloscope. The data capture routine are used to
assist in servo tuning. cTERM for Windows provides a graphing option to exploit this
feature.

• A new expression parser has been incorporated giving a 10-15% speed improvement
in the execution of expressions.

MN1260

viii 7/98

• The XENCODER keyword is supported as standard within the firmware (denoted by
the /X on the version number). In order to use the three channel encoder interface
board, the AXISCON keyword must be used to ‘switch’ it on. The 3 channel encoder
board can now be used as a master reference for cams and flying shears.

• In order to maximize the use of the memory card, array data can be stored off-line on
the memory card. This is given by the use of the new OFFLINE keyword. From then
on, the array is used in the same way as any other arrays stored locally in memory.

• The FOLLOW keyword is now able to follow the pulse timer input using the
FOLLOWAXIS keyword. This allows position lock on the pulse input.

• The new BAUD keyword can be used to change the serial baud to any value between
300 and 19,200. By default the controller powers up at 9600 baud.

• The ECHO keyword can be used to remove command line echo and error messages.

• The new TRIGGER keyword can be used to trigger moves off any of the 8 digital
inputs.

• A clutch distance can be defined for FOLLOW on axes 0 and 1. This is achieved by
setting a master increment distance using the MASTERINC keyword.

• The error handling capability of MINT has been extended with the introduction of the
ERR keywords. System run time errors such as “Out of Range” or “Motion in
Progress” can be trapped within the #ONERROR routine.

• Torque mode (see TORQUE keyword) and JOG can be entered while motion is in
progress on the axis, without a “Motion in Progress” error resulting:

move type (TORQUE

move type (JOG

• It is now possible to switch between JOG and FOLLOW without a “Motion in
Progress” error resulting:

JOG (FOLLOW (JOG (FOLLOW

• Maximum following error detection can be turned off with the AXISCON keyword.

• Maximum following error (MFOLERR) has been increased from 16000 counts to
32767 counts.

• A move can be cancelled on a stop input by using the STOPMODE keyword.

• The PRESCALE keyword allows the encoder input to be scaled down. Useful for
where a high resolution encoder cannot be changed but greater absolute distance is
required.

• GO will no longer issue “Motion in Progress” errors unnecessarily.

MN1260

ix7/98

Understanding MINT Version Numbers
Firmware versions are given a name (eg MINT) followed by the core version number and
any options. The standard options are:

/4 Multi-drop 485

/S Stepper only

/3 EuroServo/3

/SMMx SmartMove/x
/SMSx SmartSystem/x

/KCxx Processor type followed by clock speed - 12 or 14 MHz.
KC16 is assumed to be standard and is not used.

-Jxxx Job number. Used to reference customized firmware.

If the version number is post-fixed with a letter (a, b, c etc), for example 2.53d, this
dictates a minor bug fix to the software or a minor revision to a keyword.

A post-fix of “.bX”, for example v2.52.b2, is used to reference beta release version of
the software. In this case beta release 2 of version 2.52.

The following sections describe the version numbering system for MINT and MINT/3.28.
HPGL conforms to the numbering system above.

Interpolation/Process MINT: cMINT pre v2.65
Typing VER at the command line will return the version number.

c3MINT v2.53 /KC-12 /S /3 /4 /f /P /M /Xe /L /STE -J<no>
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | job no for custom firmware

| | | | | | | | | | | | | STE controller

| | | | | | | | | | | | Laser modulation (ES/3 or SMS/3 only)

| | | | | | | | | | | External encoder interface

| | | | | | | | | | Memory card; A denotes auto boot from card

| | | | | | | | | | X denotes memory expansion

| | | | | | | | | Process MINT

| | | | | | | | FASTPOS implemented (standard in v2.53+)

| | | | | | | RS485 protocol

| | | | | | EuroServo/3 or SmartSystem/3

| | | | | stepper only (EuroStep)

| | | | Processor clock speed (if not 16MHz standard)

| | | KC processor (if not 16MHz standard)

| | minor (revision) release number

| major release number

number of axes supported on card

MN1260

x 7/98

MINT/3.28: Pre v1.65
Sending a read datapacket using VN as the keyword will return the version of MINT/3.28
as a string. This can be achieved using cTERM.
MINT/3.28 v1.53 /KC-12 /S /3 /4 /STE -J<no>

| | | | | | | | | |
| | | | | | | | | job no for custom firmware
| | | | | | | | STE controller
| | | | | | | RS485 protocol
| | | | | | EuroServo/3 or SmartSystem/3
| | | | | stepper only (EuroStep)
| | | | Processor clock speed (if not 16MHz standard)
| | | KC processor (if not 16MHz standard)
| | minor (revision) release number
| major release number

ANSI x3.28 protocol

Interpolation/Process MINT: esMINT v2.65+
Typing VER at the command line will return the version number.
esMINT v2.65 /S /3 /SMMx /SMSx /4 /P /C /X /M /L /STE -J<no>

| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | job no for custom firmware
| | | | | | | | | | | | STE controller
| | | | | | | | | | | Laser modulation (ES/3 or SMS/3 only)
| | | | | | | | | | Memory card; X denotes memory expansion
| | | | | | | | | External encoder interface
| | | | | | | | CAN I/O. /CK denotes KeypadNode support
| | | | | | | Process MINT
| | | | | | RS485
| | | | | SmartSystem/X
| | | | SmartMove/X
| | | EuroServo/3
| | stepper only (EuroStep)
| minor (revision) release number

major release number

MN1260

xi7/98

MINT/3.28: v1.65+
Sending a read datapacket using VN as the keyword will return the version of MINT/3.28
as a string. This can be achieved using cTERM.
MINT/3.28 v1.65 /S /3 /SMMx /SMSx /4 /X /STE -J<no>

| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | job no for custom firmware
| | | | | | | | | STE controller
| | | | | | | | External encoder interface
| | | | | | | RS485 protocol
| | | | | | SmartSystem/X
| | | | | SmartMove/X
| | | | EuroServo/3
| | | stepper only (EuroStep)
| | minor (revision) release number
| major release number

ANSI x3.28 protocol

Standard Options in Detail
/S - Stepper

Standard for EuroStep and SmartStep/3.

Stepper only support for the axes. /S implies that there is no support for servo motors.

/4 - RS485

Multi-drop RS485 is supported allowing up to 16 controllers to be connected to a single
host. Two communication methods are supported based around ANSI/3.28. The MINT
Comms Protocol is standard within the MINT interpreter and can be used for data transfer
to an executing program. MINT/3.28 is a firmware variant which allows immediate
command execution.

If /4 is not given, RS232 support is default.

/P - Process

Standard for all servo controllers. Interpolation MINT is standard on all controllers
supporting steppers.

Allows sophisticated software gearing functions such as cam profiling and flying shears.
If /P is not given, then interpolation MINT is standard which supports circular
interpolation.

Process MINT is not supported on stepper axes.

MN1260

xii 7/98

/C - CAN

CAN bus I/O supported. This applies only to SmartMove, but when fitted allows
SmartMove to drive the ioNODE range of CAN based I/O devices. /C results in a loss of
1000 bytes from the program space reducing it to 26K.

If the CAN keypad (KeypadNode) is supported, this is denoted by a K following the C
(/CK).

/X - Three Channel Encoder Interface

Standard for all 2 and 3 axis controllers with the exception of EuroSystem and
EuroSystem/STE.

If given, supports the Three Channel Encoder Interface board. This device gives three
additional encoder input channels which can be used as master references for software
gearboxes, cam profiling and flying shears.

/M - Memory Card

Standard unless /MX is requested.

Allows the program and configuration file to be stored on battery backed S-RAM,
independent of the controller memory. /M also allows array data to be expanded by
storing the arrays on the memory card.

/MX - Memory Expansion

The program and configuration files are stored on an external battery backed memory
card, thus leaving the controller memory free for compiled code and array data. /MX
allows larger programs to be written than can be normally supported in the standard
onboard RAM.

MN1260

xiii7/98

1. Introduction . 1-1

1.1 MINT Basics . 1-5

1.1.1 Program Execution and Termination . 1-6

1.2 Safety Features . 1-6

1.3 MINT Versions . 1-7

1.4 Systems with more than Three Axes (multi-drop) 1-7

2. Program Structure . 2-1

3. Multi-axis Syntax and Motion K eywords . 3-1

3.1 Motion Commands . 3-1

3.2 Motion Variables . 3-1

3.3 Multi-Axis Syntax . 3-2

3.3.1 Single Axis References using Dot . 3-5

4. MINT Numbers, Variables and Operators . 4-1

4.1 Numbers . 4-1

4.2 Binary Numbers . 4-1

4.3 Constants . 4-2

4.3.1 Pre-defined Constant Keywords . 4-3

4.4 Variables . 4-5

4.4.1 Non-volatile Variables . 4-6

4.5 Arrays . 4-8

4.5.1 Off-line Array Storage . 4-10

4.5.2 Advanced use of Arrays . 4-12

4.5.3 Array Data File Format . 4-14

4.5.4 Uploading and Downloading Array Data . 4-17

4.6 Relational and Mathematical Operators . 4-20

4.6.1 Performing Bitwise Operations . 4-21

4.6.2 Trigonometric Functions . 4-22

MN1260

Table of Contents

xiv 7/98

5. Program Control . 5-1

5.1 Conditional Statements . 5-1

5.1.1 IF .. THEN statement . 5-1

5.1.2 IF block structure . 5-1

5.1.3 PAUSE statement . 5-3

5.2 Loops . 5-4

5.2.1 FOR .. NEXT loop . 5-4

5.2.2 REPEAT .. UNTIL loop . 5-5

5.2.3 WHILE .. ENDW loop . 5-5

5.2.4 LOOP .. ENDL loop . 5-6

5.2.5 EXIT statement . 5-7

5.2.6 Nesting . 5-7

5.3 Subroutines . 5-8

5.3.1 Events & Interrupts . 5-9

5.3.1.1 Error Event: #ONERROR . 5-10

5.3.1.2 Stop Input Interrupt: #STOP . 5-10

5.3.2 Digital Input Interrupt: #IN0 .. #IN7 . 5-11

5.3.2.1 Position Latch Event: #FASTPOS 5-13

5.4 Terminal Input/Output . 5-14

5.4.1 PRINT Statement . 5-15

5.4.2 INPUT Statement . 5-16

5.5 Keypad and Display . 5-17

5.5.1 Programming the Keypad and Display . 5-17

5.6 Sending Data to an Executing Program . 5-20

5.6.1 Serial Port/Keypad Buffer . 5-20

5.6.2 Reading Data from the Serial Buffer using INKEY 5-21

5.6.3 Host Computer Protected Protocol . 5-23

MN1260

xv7/98

6. Motion Specific Features . 6-1

6.1 Torque Control . 6-1

6.2 Speed Control . 6-2

6.3 Positional Control . 6-3

6.3.1 Linear Positional Control . 6-3

6.3.2 Interpolated Moves . 6-5

6.3.3 Linear Interpolation . 6-6

6.3.4 Circular Interpolation . 6-8

6.3.5 Velocity Profile . 6-9

6.3.6 Move Buffer and GO . 6-9

6.3.7 Contoured Moves . 6-10

6.4 Establishing a Datum . 6-11

6.4.1 Home Control Word . 6-12

6.4.2 Home Sequence . 6-13

6.4.3 Order of Datuming . 6-14

6.4.4 Defining a New Position . 6-15

6.5 Pulse Following . 6-15

6.6 Encoder Following/Software Gearbox . 6-17

6.6.1 Clutch Distance . 6-18

6.6.2 High Resolution Software Gearboxes . 6-19

6.7 CAM Profiling . 6-22

6.7.1.1 Example of Cam Profiling . 6-23

6.7.2 Cam Tables . 6-24

6.7.3 Synchronizing Cams with the Fast Interrupt 6-27

6.7.4 Multiple Cam Tables . 6-27

6.8 Flying Shears . 6-28

6.8.1 Example of a Flying Shear . 6-31

6.9 Triggered Moves . 6-33

MN1260

xvi 7/98

6.10 Mode of Motion . 6-34

6.11 Digital Input/Output . 6-35

6.11.1 Digital Inputs . 6-36

6.11.2 Digital Outputs . 6-36

6.12 Analog Inputs . 6-37

6.12.1 Joystick Control in MINT/3.28 . 6-38

6.13 Input/Output ‘On the Fly’ . 6-41

6.14 The STOP Input . 6-42

6.15 End of Travel Limit Inputs . 6-43

7. System Software Configuration . 7-1

7.1 Servo Loop . 7-2

7.2 Inverter Control . 7-5

7.3 Positional Resolution and User Units . 7-6

7.4 The Configuration File . 7-7

7.5 Data Capture . 7-8

8. Program and Motion Errors . 8-1

8.1 Program Errors . 8-3

8.2 Asynchronous Errors . 8-4

8.2.1 Error Handling using ONERROR . 8-5

8.3 Front Panel Status Display . 8-7

8.3.1 Error Conditions . 8-7

8.3.1.1 Output Errors On SmartMove . 8-8

8.3.2 Motion Status Conditions . 8-8

9. MINT Line Editor and Program Buffers . 9-1

9.1 Memory Expansion . 9-2

9.2 Password Protection . 9-4

9.3 Editor Commands . 9-4

10. MINT Keywords . 10-1

MN1260

xvii7/98

11. Error Messages . 11-1

11.1 General Error Messages . 11-1

11.2 Subroutine Errors . 11-3

11.3 Conditional Statement Errors . 11-3

11.4 Loop Structure Errors . 11-4

11.5 Motion Variable/Command Errors . 11-4

12. MINT Host Computer Communications . 12-1

12.1 Activating Protected Communications . 12-2

12.2 Use of the COMMS variable . 12-3

12.3 Read and Writing Data from a Host . 12-4

12.3.1 Writing Data . 12-5

12.3.2 Reading Data . 12-6

12.3.3 Special Location . 12-6

12.3.3.1 Aborting Program Execution . 12-7

12.3.3.2 Program Status . 12-7

12.4 Limitations of Use . 12-8

12.5 PC Library Routines . 12-8

12.5.1 C Interface . 12-8

12.5.1.1 Reading and Writing Data . 12-9

12.5.2 MS-DOS 5.0 QBasic Interface . 12-10

12.5.2.1 Reading and Writing Data . 12.10

13. MINT/3.28 . 13-1

13.1 Serial Port Configuration . 13-1

13.2 Data Packet Structure . 13-2

13.2.1 Reset: EOT . 13-2

13.2.2 Drive ID . 13-2

13.2.3 MINT Keyword . 13-3

13.2.4 Data . 13-3

MN1260

xviii 7/98

13.2.5 End of Data: ETX, ENQ . 13-4

13.2.6 Checksum . 13-4

13.3 Slave Reply . 13-5

13.3.1 MINT/3.28 Error Codes . 13-5

13.4 Writing Data . 13-6

13.5 Reading Data . 13-6

13.6 Commands . 13-7

13.7 Buffered Motion Commands . 13-8

13.7.1 The GO Command . 13-8

13.8 MINT/3.28 Example . 13-9

13.9 MINT/3.28 Supported Keywords . 13-10

13.10 MINT/3.28 C Library Routine for Host Computer 13-11

13.10.1 Writing Data . 13-11

13.10.2 Reading Data . 13-12

13.10.3 Issuing a Command . 13-13

14. MINT Execution Speed . 14-1

14.1 Improving Execution Speed . 14-2

14.1.1 Unnecessary use of Square Brackets . 14-2

14.1.2 Optimizing Logical Expressions . 14-3

14.1.3 Removing Blank Lines . 14-4

14.1.4 Performing More Time Intensive Code Outside to Dead Time . 14-4

14.1.5 Turning Redundant Axes Off . 14-5

14.1.6 Replacing Single Axis Reference with Dot 14-5

15. Manuals and Software for MINT Products . 15-1

MN1260

1-17/98

1. Introduction
MINT™, is a structured form of Basic, custom designed for motion control applications,
either stepper or servo. MINT™ has been written to allow users to very quickly get up
and running with simple motion programs, while providing a wide range of more powerful
commands for complex applications. MINT’s built in line editor allows programs to be
developed on the target by simply connecting a terminal to your controller. cTERM
(available for both DOS and Windows™), a terminal emulator specially configured for the
controller for use on a PC is provided with each control system.

As well as supporting a Basic like structure, MINT has a number of motion specific
keywords built in. These keywords allow control of motor position, speed, torque,
interpolation and synchronization of multiple axes. You also have full software control
over the basic motor control parameters such as servo loop gains.

Applications can vary from simple single axis positional control, to a multi-axis system
with 48 axes of motion controlled by a host computer over an RS485 multi-drop link.
Between these two extremes, MINT’s flexible and powerful command set will provide a
solution to the vast majority of industrial motion control applications.

MINT has the following features:

• Support for 3 axis of control on one card

• Support for both servo and stepper motors

• Basic constructs such as IF THEN, FOR NEXT and subroutines

• User variables as with Basic. Variables can be given any meaningful name up to 10
characters in length

• Subroutines that are referenced with a label rather a line number. The label can be
given any valid name

• Extensive support for serial and LCD display I/O

• Interrupts on inputs

• Array variables. Size limited only by available memory

• Error recovery from limits, following errors or external errors

• Circular and linear interpolation

• Cam profiling and Flying Shears

• Pulse and encoder following

• Protected communications protocol over a multi-drop RS485 link

MN1260

1-2 7/98

• Tokenized (semi-compiled) source code at run time to give faster program execution
speed

The short program demonstrates an XY table application that moves to a series of
positions and sets an output. This output could be used to move a tool head for example:

< MANUAL\INTRO.MNT

REM Program: XY example
REM

REM Define 10 XY positions

DIM xpos(10) = 10,10,10,20,30,40,40,40,30,20
DIM ypos(10) = 10,20,30,30,30,30,20,10,10,10

GOSUB init

GOSUB main

END

#init

HOME = 0,0 : REM Home both axes
PAUSE IDLE[0,1] : REM Wait for axes to stop

RETURN

#main

REM Repeat forever
LOOP

REM Move to the 10 points

FOR a = 1 to 10

REM Move to the absolute position
MOVEA = xpos(a),ypos(a) : GO

PAUSE IDLE[0,1]: REM Wait for axes to stop

OUT0 = 1 : REM Set an output (head down)

PAUSE IN0 : REM Wait for head to be down
OUT0 = 0 : REM Move the head up

NEXT

GOSUB init : REM Home the axes again

PAUSE IN1 : REM Wait for input to start again
ENDL

RETURN

MN1260

1-37/98

The previous example assumes that all servo loop gains, speeds, accelerations etc. have
been set-up. MINT uses 2 file buffers, the first buffer is designated the configuration file
and is used to store such information as the servo loop gains and speeds etc. The second
buffer, the program file stores this actual application. It should therefore be possible to
write an application which is common among different types of motors and to only change
the configuration file when the motor is changed. In fact the two files can accept the same
instructions, the difference is the size of the files. A configuration file can be up to 1000
bytes in length whereas the program file length which can be supported is defined by the
available memory on the controller. On program execution, the configuration file is first
executed followed by the program file. A typical configuration file for the above example
may be:

< MANUAL\INTRO.CFG

AUTO : REM Auto run program on power up

REM Configuration file for XY table

REM using servos

AXES[0,1] : REM Two axis system

RESET[0,1,2] : REM Reset all axes in the system

CONFIG = _servo,_servo

KVEL = 10; : REM Set velocity feedback for both axes
GAIN = 1.5; : REM Set proportional gain for both axes

KINT = 0; : REM Zero integral gain

KINTRANGE = 20; : REM 20%

KVELFF = 0; : REM Zero feedforward
CURRLIMIT = 100; : REM 100%

SCALE = 400; : REM Scale factor. Assume units of mm

SPEED = 200; : REM Speed of 200 mm/sec

ACCEL = 500; : REM Accel of 500 mm/sec^2
MFOLERR = 2; : REM Max following error of 2mm

IDLE = .5; : REM Idle position of 0.5mm

RAMP = 0; : REM Trapezoidal

HMSPEED = 50;: REM Datuming speed
BACKOFF = 10;: REM Datuming backoff speed factor

ERRORIN = 1 : REM External error state

MN1260

1-4 7/98

The keyword, AUTO, at the top of the configuration file is used to instruct the controller
to automatically run the configuration, then the program file on power-up. AUTO must be
the first command in the configuration otherwise you will be taken to the command line.
The command line allows commands to be entered for immediate execution. To execute a
program without AUTO, the RUN command would be typed in at the command line. To
terminate an executing program, is used from the terminal.

You will note in the example, such keywords as RESET, KVEL and SPEED etc. These
are motion specific keywords and are used to access motion control and input/output
features of the system. All motion keywords, unlike the BASIC type keywords (for
example: FOR, PRINT, WHILE), can be abbreviated to two letters. For instance, SPEED
is abbreviated to SP which is useful for saving file space.

To access a particular axis, square brackets are used next to the motion keyword. For
example:

SPEED[1] = 10

or a dot as shown:

SPEED.1 = 10

will set the speed of axis 1 to 10 units where axes are referenced as 0, 1 and 2.

ACCEL[0,1] = 600,800

will set the acceleration of axis 0 to 600 units and axis 1 to 800 units.

a = POS[2]

will assign the position of axis 2 to the user variable a.

In most cases the square brackets are optional.

SPEED[0,1] = 10,20

SPEED = 10,20

are the same depending on the value of the default axes string as defined by the AXES
keyword. The AXES keyword as seen in the configuration file example (of AXES[0,1])
tells MINT that all motion keywords relate to 2 axes, i.e. 0 and 1 unless explicitly
indicated by enclosing the axes in square brackets after the keyword. For example:

RESET[0,1,2]
as used in the configuration file example will reset various parameters and error flags to a
known state on axes 0,1 and 2.

Multi-axis syntax and the AXES keyword is explained in greater detail in section 3.

MINT by default defines all positional and speed related motion keywords in terms of
encoder quadrature counts for servo motors or steps for stepper motors. Using the
SCALE keyword, these keywords can be scaled to your own units to suit your application.
The diagram below shows the effect of scaling on positional information:

MN1260

1-57/98

In an XY application, for example, you may want to define all positions in milli-meters or
inches.

Example:

An XY table uses servo motors with 500 line encoders and a 4 mil pitch. With quadrature
encoder this gives 2000 counts per revolution of the motor or 500 counts per milli-metre.
To scale the positions and speeds to milli-meters, the following could be used:

SCALE = 500,500 : REM Scale to mm

SPEED = 30,30 : REM Speed = 30 mm/sec

ACCEL = 500,500 : REM Accel = 500 mm/sec^2

MOVEA = 100,200 : GO : REM Move to position 100,200mm

MOVER = -10,-10 : GO : REM Move relative -10,-10mm

Programs can be entered into the controller memory by either using the onboard editor or
writing a program on an external computer and downloading the program using a terminal
emulator. cTERM, a terminal emulator for both DOS and Windows is provided for this
purpose. MINT’s on-board editor provides commands such as INS and DEL to insert and
delete program lines and are discussed in section 9.

1.1 MINT Basics
MINT, as with many other forms of Basic, supports a command line interface. By
connecting the controller up to a terminal (for example a PC running cTERM — a pre-
configured terminal emulator for DOS and Windows for use with the controllers),
commands can be typed on to the command line for immediate execution. For example:

PRINT POS

will display the position of the motor.

MN1260

1-6 7/98

Multiple commands can also be entered by separating the commands with colon (:). For
example:

MOVEA = 100 : GO : PAUSE IDLE : OUT1 = 1

will move the motor to position 100, wait for it to come to rest and then set output bit 1.

Some commands, such as DIM, COMMSON, COMMSOFF, GOSUB and GOTO cannot
be executed from the command line.

1.1.1 Program Execution and Termination

A program (series of commands) can be created using either an offline editor or the MINT
line editor (See section 9 for details on the editor and editor commands). A program, once
entered into the controller can be executed using the RUN command. Alternatively, the
command AUTO allows the program to be executed automatically on power up.

Once a program is running execution can be terminated by sending Ctrl-E (character 05H)
down the serial port. This will terminate program execution and MINT will return with
the message:

Break at line XXX

From the command line, it is possible to execute a continuous loop. In the same way as
program execution is terminated, Ctrl-E is used to terminate command line execution. For
example:

LOOP : ? IN : ENDL

If the MINT Comms Protocol is running, Ctrl-E will have no effect. The MINT
Comms Protocol must be terminated first. See section 12.3.3.1 for details.

1.2 Safety Features
Both the controller card and MINT incorporate a number of safety features. These are:

• End of travel limits resulting in a limit error.

• The setting of a maximum permissible following error (MFOLERR) before cutting
power to the motors. This is very useful if an axis hits an endstop where the following
error can build up.

• Stop input to bring all axes to a controlled stop.

• External error input to bring all axes to a crash stop.

MINT has full control over these features, should an error occur, an ONERROR routine
will be called. From the ONERROR routine you can decide to recover from the error or
perform a complete system shut-down for example.

MN1260

1-77/98

1.3 MINT Versions
MINT is available in 3 versions:

Process MINT Process MINT, incorporates such motion control features as
software gearboxes, cam profiles and flying shears. Process
MINT supports up to 3 axes of linear interpolation but does not
support circular interpolation.

Is must be noted that Process MINT supports cam profiles and
flying shears on the first 2 axes only (Axes 0 and 1).

Interpolation MINT Interpolation MINT provides full linear and circular
interpolation within the MINT environment. Interpolation
MINT does not support the cam profiling and flying shear
capabilities of Process MINT. A subset of Process MINT’s
software gearboxes are supported.

MINT/3.28 MINT/3.28 is intended specifically for systems where a host
computer sends motion control commands to the controller in
real time. Motion control programs are not supported on the
controller, but commands are sent by a host computer by means
of datapackets.

MINT/3.28 only supports a subset of the MINT command set,
namely the motion control commands. The Process MINT
command set is not supported.

MINT/3.28 will operate over either an RS232 or RS485 link.
The physical constraints of RS232 allow only point-to-point
communication, i.e. one host computer can talk to one
controller, RS485 provides longer transmission distances and
allows a single host computer to communicate with up to 16
controllers on one multi-drop link.

Within a multi-drop 485 system using MINT/3.28, a controller
cannot act as a host to other controllers on the system.

1.4 Systems with more than Three Axes (multi-drop)
MINT only supports the control of 3 axes on one controller. However, using a host
computer based system it is possible to connect up to 16 controllers on to a multi-drop
RS485 serial link and to issue instructions to these controllers using specially constructed
data packets.

MN1260

1-8 7/98

Using MINT, it is possible to switch
from controller to controller over a
multi-drop link by sending $
followed by the card address. The
card address is set by the 4 way DIP
switch, details of which can be
found in the appropriate hardware
guide. Note that the card address
can be read using the CARD
keyword.

Example:

$3

will give you control of card 3. Having gained access you can now proceed to upload and
download programs over the multi-drop link.

To gain access to cards 10 to 15, send $A to $F (note that addresses A to F are in capitals)

It is also possible to pass data to an executing program or to issue commands for
immediate execution using one of two protocols.

MINT Host Computer Communications (Comms Protocol)
In MINT data can be passed to and from the controller using a protected data packet into a
99 element array on the controller. This is analogous to a mail-box with 99 pigeon holes.
The host computer can place data into a pigeon hole for the controller to read and vice
versa which occurs during program execution. See section 12 for full details of the
Comms Protocol. An example of the comms protocol is given in the applications section
of the Getting Started Guide.

MINT/3.28
MINT/3.28 is intended specifically for systems where a host computer sends motion
control commands to the controller in real time. MINT/3.28 is a data-packet based
system used for communications over the RS232 or RS485 serial communications links.
The physical constraints of RS232 allow only point-to-point communication, i.e. one
host computer can talk to one controller, RS485 provides longer transmission distances
and allows a single host computer to communicate with up to 16 controllers on one
multi-drop link. Each controller has a unique address set by a switch on the controller
card. MINT/3.28 is not standard software and requires a firmware change. Please
contact your distributor for details. See section 13 for full details of MINT/3.28

Both protocols are defined by the ANSI standard 3.28, which consists of a card address
followed by data and a checksum, allowing both systems to be shared on the same
multi-drop link. The checksum ensures fault tolerant communications between host and
controller.

MN1260

2-17/98

2. Program Structure
Application programs in MINT are made up of a configuration file and a program file.
The configuration file should store all the set up and initialization commands and the
program file the actual application itself.

The following examples show the sort of structure that is recommended when writing
MINT applications:

Configuration file for a servo system:

< MANUAL\TEMPLATE.CFG

AUTO : REM Auto run program
REM Project ...
REM Author
REM Date

AXES[0,1]
RESET[0,1,2] : REM Clear all axes in the system
CONFIG = _servo, _servo
REM Set servo loop parameters
KVEL = 10;
GAIN = 2;
KINT = 0;
KINTRANGE = 25;
KVELFF = 0;
CURRLIMIT = 0;
REM Set scaling factor and all scaled variables
SCALE = 500;
SPEED = 20;
ACCEL = 700;
HMSPEED = 10;
BACKOFF = 5;
IDLE = .25;
MFOLERR = 2;
RAMP = 1;

You are recommended to read the Getting Started Guide to determine the best gains for the system.

MN1260

2-2 7/98

Configuration file for a stepper system:

AUTO : REM Auto run program
REM Project ...
REM Author
REM Date
AXES[0,1]
RESET[0,1,2] : REM Clear all axes in the system
CONFIG = _stepper, _stepper
REM Set scaling factor and all scaled variables
SCALE = 500;
SPEED = 20;
ACCEL = 700;
HMSPEED = 10;
BACKOFF = 5;
IDLE = .25;
RAMP = 1;

Program file:

< MANUAL\TEMPLATE.MNT
REM Program file
RME Project ..
REM Author ...
REM Date

GOSUB init
GOSUB main
END

REM Setup all global variables here
#init

my_var1 = 1
newPos = 1000

RETURN

REM Main loop here
#main
LOOP

REM Place main code here
ENDL
RETURN

REM Define rest of subroutines here

the subroutine init is used to define all global variables used within the system. This must
be placed at the beginning of the program since variables are defined at compile time and
not run time.

See section 4.4.1 on how to implement non-volatile variables.

MN1260

MN1260 3-17/98

3. Multi-axis Syntax and Motion Keywords
Motion keywords can be broken down into 2 groups:

1. Motion commands

2. Motion variables

3.1 Motion Commands
Motion commands are used very much like a Basic command such as PRINT. For
example:

STOP

will bring the axes to a controlled stop.

GO[0,1]

will begin motion on axes 0 and 1. Note the use of square brackets to reference axes.
This is explained in detail later on.

3.2 Motion Variables
A motion variable is used very much like a user or Basic type variable in that it can be
written to or read from. For example:

GAIN = 1 : REM Set the proportional gain
PRINT POS : REM Print the current position

Some motion variables are read only and some are write only. For example:

a = OUT1

is invalid since OUT1 is a write only variable that is used to set the value of digital output
bit 1.

VEL = 0
is invalid since VEL is a read only variable that returns the instantaneous velocity of the
motor.

Motion variables are range checked when written to. For example:

SCALE = -1

will display the error message “ERROR: Out of range” (if a terminal is connected)
because SCALE only accepts a value between 1 and 65000.

Square brackets are used to reference axes as for motion commands. For example:

SPEED[1,2] = 10,20

MN12603-2 7/98

set the speed of axis 1 to 10 units and axis 2 to 20 units. Multi-axis syntax is explained in
detail in the next section.

3.3 Multi-Axis Syntax
With the exception of a few motion keywords, motion keywords are axis related in that
setting the speed, for example, on one axis has no effect on the speed of the other axes.
MINT’s multi-axis syntax supports up to 3 axes on one controller.

MINT uses the convention of axis number 0 to refer to the first axis, axis number 1 to
refer to the second axis and so on.

In a single axis system, you do not have to specify the axis number explicitly since MINT
will default to axis 0 (the first axis in the system). Therefore:

GAIN = 1
will set the proportional gain on axis 0 to 1.

In a multi-axis system, each axis is referenced by enclosing the axis numbers in square
brackets [] immediately after the motion keyword. For example, to set the speed of axis 0
and 1 to 10 and 30 respectively:

SPEED[0,1] = 10,30

or:

SPEED[1,0] = 30,10

The number of parameters following the equal sign cannot be greater than the number of
axes given except in a few cases (see CIRCLEA and CIRCLER). The following is
invalid:

MOVEA[0,1] = 100,150,500
where MOVEA is used to set-up an absolute positional move. However:

MOVEA[0,1,2] = 10,20

is valid and will set-up an absolute move on axis 0 and 1 only of 10 and 20 units
respectively.

Variables can be used as axis numbers:

MOVER[a] = 100

is valid provided a is in the range of 0 <= a <= 2.

MOVER[a+1] = 100

is invalid. The expression “a+1” must be assigned to a variable before being passed as an
axis number.

MN1260 3-37/98

The keyword AXES is used to set-up a default axis string. For example:

AXES[0,1]

SCALE = 10,10
SPEED = 200,300

ACCEL = 500,500

is the same as:

SCALE[0,1] = 10,10
SPEED[0,1] = 200,300

ACCEL[0,1] = 500,500

Not only does the AXES keyword save on typing, but it also speeds up program execution.
To see the current status of the AXES keyword, type AXES at the command line. AXES
on its own in a program will result in a run time error.

When the controller is first powered up, the AXES keyword will default to the axes 0, 1
and 2 (for a 3 axis controller) i.e.:

AXES[0,1,2]
With the AXES string set, MINT will apply the following rules: Assuming AXES[0,1]

Example 1: Motion Commands

STOP

will perform a controlled stop on axes 0 and 1 and is equivalent to

STOP[0,1]

Example 2: Writing to Motion Variables

SPEED = 10

will set the speed of axis 0 to 10 and is equivalent to:

SPEED[0] = 10

Example 3: Reading Motion Variables

a = POS

will read the instantaneous position of axis 0 and is equivalent to:

a = POS[0]

With the AXES keyword set a single axis can still be referenced. For example, assuming
AXES[0,1,2]:

SPEED = 10

will set the speed of axis 0 to 10

MN12603-4 7/98

SPEED = ,10
will set the speed of axis 1 to 10

SPEED = ,,20

will set the speed of axis 2 to 10.

In some cases, the values assigned to each axis are the same. For example in a servo
system with identical amplifiers and motors, the servo gains will no doubt be the same.
Instead of writing the following:

AXES[0,1,2]

KVEL = 10,10,10
GAIN = 1.5,1.5,1.5

KINT = .1,.1,.1

you can write

AXES[0,1,2]
KVEL = 10;

GAIN = 1.5;

KINT = .1;

The semicolon will apply the last value to all the remaining axes. For example:

SPEED[0,1,2] = 10,20;

will set the speed of axis 0 to 10 and the speed of axis 1 and 2 to 20 and 20.

It is possible to read more than 1 axis using the square bracket notation. For example:

PAUSE IDLE[0,1]

will wait for both axis 0 and axis 1 to come to a stop. This is equivalent to:

PAUSE IDLE[0] AND IDLE[1]
but the first expression is both quicker to execute and takes up less code space. However:

PAUSE IDLE

will only wait for the first axis set by the AXES keyword to become idle. If we assume
AXES[0,1] has been set, then this is equivalent to:

PAUSE IDLE[0]

Where more than one axis is read, the results are ANDed together using bitwise
arithmetic. This is only really useful for keywords that return true (1) or false (0).

3-57/98 MN1260

3.3.1 Single Axis References using Dot

A single axis can be reference using dot ‘.’, followed by the axis number. The axis
number can be expressed as either a number or a variable. For example:

b = POS.1

is the same as:

b = POS[1]

The first expression has 2 advantage over the second. First, it occupies less code space,
and secondly, it executes some 50% quicker.

Note that:

b = POS.a + 1
is equivalent to:

b = POS[a] + 1

3-6 7/98MN1260

MN1260 4-17/98

4. MINT Numbers, Variables and Operators

4.1 Numbers

All numbers are represented as a four byte scaled integer. This gives a range of +/-
8,388,607.996, where the fractional part has a resolution of one part in 256 or 0.004. Due
to the integer nature of the processor, numbers in MINT are not true floating point
numbers since this would result in slower program execution. In a linear table application,
MINT numbers would give a maximum positional resolution of 1 micron in 16 meters.

Example:

PRINT 1.002
will display

1.003

to the terminal. This is because MINT will round the number to the nearest part in 256.
The fractional part of a MINT number is calculated as follows:

Given a number of 1.15, what proportion of 256 is the fractional part 0.15 ?

Assuming 3 fractional places, 0.15 can be represented by 150/1000, the internal value of
0.15 is given by:

INT(150 * 256 / 1000) = 38

therefore 0.15 is represented as 38/256 or 0.148 (approx.). In fact the statement “PRINT
0.15” will display “0.148” to the terminal screen.

4.2 Binary Numbers

Binary numbers are defined by placing a zero before the binary string. For example:

PRINT 011011

will display

27

Binary numbers are useful when writing to outputs. For example:

OUT = 011110000

this will turn the top 4 bits on and the bottom 4 bits off.

a = 11

is not a valid binary number and will assign the value of 11 to the variable a.

a = 05

MN12604-2 7/98

is an invalid binary number and will generate a syntax error, however:

a = 0.5

is acceptable and will define the value of 0.5 to the variable a.

4.3 Constants

A constant is a number in your program that does not change during program execution.
For instance, the expression:

SPEED = 20.5
assigns the constant value 20.5 to the motion variable SPEED.

MINT accepts four types of constants:

• Constant numbers

• Binary constants

• Character constants

• Pre-defined constant keywords

By default, MINT interprets all constant numbers as decimal unless otherwise specified.
Binary constants are defined by prefixing the number with a zero, as discussed in the
previous section.

MINT also provides character constants for use with the INKEY and READKEY
commands. To define a character constant, enclose the character in single quotes, for
example:

a = ‘A’

will assign the value of 65 to a. MINT will convert all character constants to their upper
case equivalent. Therefore:

‘A’

‘a’

both have the value of 65.

Refer to an ASCII character table for the decimal value of each character.

MN1260 4-37/98

Character constants are useful for interpreting key presses as shown in the following
section of code:

< \MANUAL\CHAR.MNT

#mainMenu

LOOP
LOCATE 1,1

?”A .. Start”

?”B .. Setup”

key = INKEY

IF key = ‘A’ THEN GOSUB start

IF key = ‘B’ THEN GOSUB setup

ENDL
RETURN

#start

...
RETURN

#setup

...
RETURN

If key ‘A’ is pressed, the start subroutine will be called. If ‘B’ is pressed, set-up will be
called.

4.3.1 Pre-defined Constant Keywords
MINT has a number of pre-defined constant keywords that can be used to aid the
readability of programs. All constants begin with an underscore to distinguish them from
other MINT variables.

Examples:

OFFSET = 10 : PAUSE mode = _pulse : REM Wait for offset to finish
OUT1 = _on : REM Switch output bit 1 on

IF ERROR = _limit THEN DL : REM Limit Error

CONFIG = _stepper : REM Configure for stepper mode

HOME = _posindex : REM home in pos direction and seek index

MN12604-4 7/98

A complete list of the MINT constants is shown below:

Constant Name Value Associated Keyword

_true 1

_false 0

_on 1

_off 0

_idle 0 MODE

_servoff 1 MODE

_linear 2 MODE

_jog 3 MODE

_circular 4 MODE

_pulse 5 MODE

_torque 6 MODE

_homing 7 MODE

_offset 8 MODE

_follow 9 MODE

_abort 1 ERROR

_maxfe 2 ERROR

_limit 3 ERROR

_external 11 ERROR

_servo 1 CONFIG

_stepper 2 CONFIG

_micro 3 CONFIG

_neg 0 HOME

_negindex 1 HOME

_pos 2 HOME

_posindex 3 HOME

_lcd 1 TERM

_serial 2 TERM

_both 3 TERM

MN1260 4-57/98

4.4 Variables
Variables are meaningful names that are used to represent data in a program. You can
assign a value to a variable at the beginning of a program and use it like a constant, or its
value may be set as the result of calculations or incremented in a loop. These variables
are referred to as user variables to distinguish them from motion variables which are
reserved keywords in MINT used to perform a specific task.

User variables can have any name as long as it is not a reserved word or MINT keyword
and begins with a letter followed by any alphanumeric character or an underscore.
Alternatively, variable names can begin with an underscore as long as it is followed by an
alphanumeric. Variable names may be any length but only the first ten characters are
significant.

Examples of variable names:

my_var1

xPosition

_myVar2
Unlike many implementations of BASIC, variables must be declared before being used,
otherwise an error is generated. A variable declaration is any valid assignment to the
variable. For example:

aVar = 10

bVar = aVar

will define variables aVar and bVar if they are not already defined and give them a value
of 10.

It should also be noted that the following statements will also define a variable:

FOR .. NEXT

DIM

INPUT

Variables can be used in any valid expression. For example:

newPos = 2
oldPos = newPos*2

PRINT oldPos+newPos

Running this code fragment will define variables oldPos and newPos and print the value 6
to the screen.

An extensive range of operators can be used on numbers and variables. These are
discussed in more detail in a later section.

MN12604-6 7/98

MINT only supports numeric variables, string variables found
in standard Basic are not implemented.

There are two MINT commands associated with user variables. DISPLAY lists all
currently defined variables and their values. RELEASE erases the currently defined
variables from memory.

A maximum of 501 variable names can be defined in any one program.
To clear all variables from memory, use RELEASE. Note that RELEASE

cannot be used in a program. If you wish to clear all variables before
executing a program each time, place RELEASE in the configuration file,

ensuring that no variables are defined in the configuration file.

Motion variables have an almost identical syntax to user variable assignment and can be
used in a similar way:

c = POS * 10

will assign the position of the axis, multiplied by 10, to the variable c.

4.4.1 Non-volatile Variables

Array data is by default non-volatile but variables are not since they must first be declared
by assigning a value to them which makes them volatile (ie their value at power down is
not retained). For example:

my_var1 = 0

my_var2 = 0

will assign both my_var1 and my_var2 to zero. Due to the way MINT compiles and
executes programs, non-volatile variables can be set-up by assigning them in a subroutine,
but never calling the routine. For example:

#non_volatile

my_var1 = 0
my_var2 = 0

RETURN

MINT code is compiled before it is executed. It is at this stage that variables are defined
in the symbol table. If the variable already exists in the table, its value is preserved. If the
variable does not exist, (i.e. has just been defined due to a change in the program), it is
assigned in the table with a value of 0.

1The memory card expansion option allows a maximum of 100 variables to be defined.

MN1260 4-77/98

To work correctly, the non_volatile subroutine must be placed near the beginning of the
program before any other references to the variables, otherwise an undefined variable error
will be issued during compilation. A program structure may be as follows:

< MANUAL\NONVOL1.MNT

REM Program title

GOSUB init : REM Initialize
GOSUB main : REM Main program loop

END

#non_volatile
my_var1 = 0

my_var2 = 0

RETURN

REM Rest of program here

#init

RETURN

REM Main Program loop

#main

RETURN

It may be that on first running a program, you want variables to default to a value other
than zero. This can be done by checking a non-volatile variable as shown:

< MANUAL\NONVOL2.MNT

REM Program title

REM Check variables have been defined
IF non_volatile = _false THEN GOSUB default

GOSUB init : REM Initialize
GOSUB main : REM Main program loop

END

REM Declare non volatile variables
#non_volatile

non_volatile = 0
RETURN

MN12604-8 7/98

REM Declare variable and initialize them
#default

non_volatile = _true
my_var1 = 10
my_var2 = 20

RETURN

REM Rest of program here
#init

RETURN

REM Main loop
#main

RETURN

When the program is first executed the variable non_volatile is defined as zero and the
routine default executed. When the program is re-executed, the routine default will be
ignored since non_volatile is now 1.

4.5 Arrays
An array is a table of values that is referenced by a single name. Each value in the array
is called an element. Elements are numeric variables that can be used in expressions and
MINT statements in the same way as simple variables described previously. Each element
in the array is referenced by a number in parentheses which follows the array name, this
number is termed an index. Note that the index is always enclosed in round brackets to
distinguish it from a reference to axis numbers which are in square brackets. For
example:

my_var(10) = 100.5

will assign the value 100.5 to the array variable my_var index 10

a = my_var(10)

will assign the value of array variable my_var index 10 to the variable a.

Before using an array variable, memory space must be reserved for it’s storage by use of
the DIM statement:

DIM my_array(10)

declares an array variable called my_array with ten elements.

PRINT my_array(4)

will print the contents of element four to the user terminal. Array variables are very useful
for motion control applications since they can be used for storing a large number of data

MN1260 4-97/98

points that can be used in the program for positional moves. MINT supports only single
dimensional arrays (one subscript per variable name).

The array variable name can also be used as a normal variable. For example
“my_array = 1” is a valid expression for the above array.

MINT implements array variables slightly differently to standard Basic to enhance their
applicability to motion control. Initialization of the contents of the variables is achieved
by appending a list of the data after the DIM statement:

DIM y_position(10) = 1,2,3,4,5,6,7,8,9,10

declares an array y_position, where the first element, y_position(1), is equal to 1 etc. If
the list of initialization parameters extends beyond one line then the last entry on each line
should have a comma after it. This tells the MINT compiler that there is further data on
the next line.

A semicolon after the last entry will initialize all parameters to the value preceding it:

DIM y_position(10) = 10,0;

initializes the first element in the array to ten and the remaining elements to zero.

Arrays are initialized at compile time and not run time. Therefore the above
expressions will always be executed regardless of where they reside in the program.

The other way to initialize an array is at run time, for instance, a simple program may be
written to record the position of the axis into an array for a teach-by-hand type
application:

DIM pos_array(20) : REM define array

SERVOFF : REM motor power off
FOR i = 1 to 20

PAUSE IN1 = 1 : REM wait in1 = 1

y_position(i) = POS : REM store posn

PAUSE IN1 = 0 : REM wait in1 = 0
NEXT : REM back to start

This is a simple example of implementation of an application whereby the operator
manually moves the motor and records positions by pressing a switch connected to input
one. These data points may be used later in the program to duplicate operator input. This
sort of approach is useful in linear table applications. Refer to sections 5 and 10 for more
information on the use of programming statements.

4-10 7/98MN1260

One important difference between MINT and standard Basic is that array variables are not
initialized to zero at run time. This means that data stored in previous executions of the
program is not lost when the system is turned off.

You have seen how a series of points can be stored in an array in a teach-by-hand
application. Entering this data may be a long process, so it is recommended that you save
a back-up copy to disk. Array data may be uploaded and stored on a disk by using a
standard terminal emulation program such as the one supplied on disk with this manual
(cTERM).

Upload and Download facilities allow you to teach a machine a series of points which are
stored as array data, upload the data into your computer using the SAVE command, store
as it a file and then download it, using the LOAD command, to any number of identical
controllers. Alternatively, with a memory card attached, array data can be saved and
restored to a memory card, again using the LOAD and SAVE keywords. More details
about saving and restoring array data is contained in the following sections.

4.5.1 Off-line Array Storage

A memory card interface is available which supports a 64K or 128K RAM (SmartMove
only) for memory expansion. The memory card interface is either built into the controller
(as with SmartMove), or is supplied as an expansion card. Section 9.1 contains
information on using the memory card for memory expansion. This sections deals with
using the memory card for expansion of array data.

Consider the following example:

DIM OFFLINE xpos(1000)
DIM OFFLINE ypos(1000)

DIM zpos(50)

SERVOFF
FOR a = 1 TO 1000

PAUSE IN1 : REM Wait for input 1

xpos(a) = POS.0

ypos(a) = POS.1
NEXT

The array data xpos and ypos have both been defined as residing off-line on the memory
card by use of the OFFLINE keyword within the DIM statement. No internal memory is
used by the array data. zpos on the other hand resides within the controller memory
space. Offline array data can then be used throughout the program as though the data
resides within the controller address space.

MN1260 4-117/98

With a 64K RAM card, some 64,256 bytes of memory are free or up to 16,064 array
elements. A 128K RAM card, as supported by SmartMove, will double this amount of data.

Memory cards can be swapped at any time during program execution, therefore making
the number of array elements for any program limitless. A memory card must be in place
during program compilation otherwise an “Out of Memory” error will result. It will then
be necessary to replace the memory card and reset the controller.

The memory card can still be used in the normal manner, allowing a program and
configuration file to be saved as well as on board array data. A 64K memory card is split
into the following configuration:

If a program and array data are not saved to the memory card, this memory is available for
off-line array data. It must be noted that off-line array can over-write the Array Data
space as shown above. It is up to the user program to ensure this does not happen.

A 128K RAM card provides an additional 64K of data above the address FF00H. The top
most address becomes 1FF00H.

A cam table must be declared online. Using OFFLINE to declare a cam table
will result in an “Out of Range” error when the cam is executed.

To further increase the size of MINT program files, the memory expansion firmware
option should be used. This is denoted by /MX in the version number and increases
memory size by storing the configuration and program files on the memory card, not on
the controller. See section 9.1.

4-12 7/98MN1260

4.5.2 Advanced use of Arrays

Consider an insertion application, whereby the machine must repeatedly move through a
series of points and perform an insertion operation, but different work-pieces require a
different series of positions. This is an ideal application for array data.

The following code fragment defines two arrays, X and Y, that store fifty data points each
for an X-Y insertion application:

DIM X(50)

DIM Y(50)

A program to read the data in the arrays and perform the insertion might look something
like this (the exact syntax of the move instructions is covered in later sections of this
manual, consider for now only the way that we use the data):

FOR I = 1 TO 50
MOVEA = X(I),Y(I) : REM read Ith elements

GO

PAUSE IDLE[0,1] : REM wait for move to finish

OUT1 = 1 : REM output one is connected to..

WAIT = 50 : REM .. the insertion machine
OUT1 = 0

NEXT

The statement MOVEA = X(I),Y(I) selects the Ith element of the arrays as the positions
for the Ith iteration of the FOR loop. If different jobs require different numbers of
insertion operations, we would probably store the maximum value of the loop as a
variable as well.

Array data is stored in the controller memory as a table of four byte variables. Data space
is limited by memory on board the controller to approximately 4000 elements, depending
on the size of the application program (this can be increased using a memory card and the
OFFLINE keyword). Each element is a scaled integer like normal MINT variables, where
the top three bytes represent an integer value in the range ±8,388,607 and the lower byte is
a fractional part with a resolution of 1/256.

The statements:

DIM X(50)

DIM Y(50)

reserve a one hundred element (400 byte) long table of data in the controller’s memory.

For advanced users, it is possible to externally generate the array data for X and Y in the
example program above and download this is to the host without loading a new program.
This data might be generated by any application that can produce a series of numbers in

4-137/98 MN1260

ASCII format. For instance, if you wished to interface a CAD (Computer Aided Design)
system with your insertion machine, you could write a program that generated the data
formatted as specified in the next section.

Example Program: Teach and Replay

This simple example uses arrays to record 10 XY positions. The operator uses a joystick
to move the table around; 3 operator panel keys are labeled ‘teach’ ‘replay’ and ‘record’,
which return ‘A’ ‘B’ & ‘C’ up the RS232 port.

Using array data files, it is possible to learn a series of points and to save the array data
using the SAVE command. Likewise, the data can be edited using any standard text
editor, and the new data loaded using the LOAD command.

< MANUAL\TEACH.MNT

REM XY Table Example: teach and replay
REM for an insertion application

DIM x_position(10) : REM 10 points of data

DIM y_position(10)
GOSUB main

END

#main
LOOP

PRINT “Press Teach or Replay”

key = 0

REM Wait for a key to be pressed
WHILE key = 0

key = INKEY : REM Read keyboard

IF key = ‘A’ THEN GOSUB teach

IF key = ‘B’ THEN GOSUB replay

ENDW
ENDL

RETURN

REM Subroutine to teach points and record in arrays
#teach

PRINT “Teach mode” BEEP

WAIT = 1000 : REM Wait one second

MN12604-14 7/98

FOR point = 1 to 10
PRINT “Move to position “,point

REPEAT : REM repeat until record button is pressed

REM jog at X,Y speed given by analog inputs, range ..

REM is 0-1024, subtract 512 to give bi-directional control
jog_x = ANALOGUE1-512

jog_y = ANALOGUE2-512

REM deadband of 4 points either side of zero

IF ABS(jog_x) < 4 THEN jog_x = 0
IF ABS(jog_y) < 4 THEN jog_y = 0

JOG = jog_x, jog_y

UNTIL INKEY = ‘C’

STOP : REM stop jog motion
PAUSE IDLE[0,1] : REM wait until stationary

x_position(point) = POS[0] : REM Read position of X axis

y_position(point) = POS[1] : REM Read position of Y axis

NEXT : REM get next point
RETURN

REM Replay learned points, go to Home position first

#replay

HOME = 1; : REM go to home position first
PRINT “Replay mode” :BEEP

FOR point = 1 TO 10

VECTORA = x_position(point), y_position(point)

GO
NEXT

RETURN

4.5.3 Array Data File Format

When array data is saved, using cTERM for example, it is saved in an ASCII format. This
means that the file can be read using a standard text editor and array values modified if
necessary. An example file is shown:

MN1260 4-157/98

An example file is shown:

:MINT array variables

my_array1(10)
1, 2, 3, 4, 5
6, 7, 8, 9, 10
my_array2(5) OFFLINE
5, 4, 3, 2, 1

The above might correspond to the following MINT program:

DIM my_array1(10) = 1,2,3,4,5,6,7,8,9,10
DIM OFFLINE my_array2(5) = 5,4,3,2,1

Array data files can be created or changed using a standard text editor, and the new data
loaded into the system. The loading and saving of array data is discussed later on.

The following restrictions apply to array data files:

• The data file must begin with a comment line. A comment line is prefixed by a colon (:).

• The array variable name is given followed by the number of elements in the array
enclosed in brackets. For example:

my_array1(10)

• If the array has been defined as OFFLINE within the program, the array name must be
followed by the OFFLINE keyword as shown:

my_array1(10) OFFLINE

• The data must appear on the next line following the variable name, otherwise when
downloading data to the target, values will be lost. An invalid example is:

my_array(10) 10,20,30,40

• The last data value on a line must only have a carriage return following it. If it is
followed by a comma, a value of zero will be recorded. This is unlike the DIM
statement. An invalid example is:

10,20,30,40,

• No semicolon is supported as with the DIM statement. An invalid example is:

10,20,30,40;

• Comments can be added to array data files by prefacing the comment with a colon (:).
Comments are ignored by MINT, therefore uploaded array data files contain no
comments except the first line: ‘:MINT array variables’.

• If an array variable was declared in a file with 10 elements, but 11 values follow, the
11th value will be lost. If less than 10 values are given, the remaining values will be
random.

• The array file must be terminated with Ctrl-Z.

MN12604-16 7/98

A very important point to make is that the array data file must contain the same number of
array definitions and be in the same order as the MINT program file. If not, then data will
be lost or be incorrect. When the array data file is downloaded, or a MINT program
executed, MINT will reserve space in memory. The order of where the data lies in
memory is defined by the order of the declarations.

Program File Array Data File

DIM xpos(100) xpos(100)
DIM ypos(100) 1,2,3,4
DIM cam0(201) …
DIM minc0(200) ypos(100)

1,2,3,4
…
cam0(201)
200,1,2,3,4
…
minc0(200)
1,2,3,4
…

An example of an invalid array file is shown:

Assume the target has the following array variable defined:

my_array(10)

The array data file defines the following array variables:

my_array2(10)

1,2,3,4,5

6,7,8,9,0

my_array3(10)

10,20,30,40,50

60,70,80,90,100

When this file is loaded into the target, typing DISPLAY will show that the values of
my_array are the same as that of my_array2. If a value is assigned to my_array2, it will
also be assigned to my_array as shown on page 4-17.

DIM my_array(10)

my_array2(5) = 12.5

PRINT my_array(5)

MN1260 4-177/98

Results in 12.5 being printed, as does:

PRINT my_array2(5)

If the array variable names in the array data file do not correspond to the array variable
names held in memory, the variables should be released from memory using the
RELEASE command.

If too many variables are defined, some array variables may be lost. If this is the case,
clear all the variables from memory using the RELEASE keyword, and reload the array
data. Make sure any necessary array data has been saved first.

4.5.4 Uploading and Downloading Array Data

MINT allows array data to be uploaded and downloaded during program execution using
the SAVE and LOAD commands.

The following program has been written in GWBASIC, on PC, to show uploading and
downloading of some dummy array data from a host computer.

< \MANUAL\ARRAY.BAS

10 REM GW-Basic routine to download array data to MINT

20 REM Define the arrays

30 DIM xpos(10), ypos(10)
40 GOSUB 500 : REM Read the data

50 REM Open up the serial port

60 OPEN “COM1: 9600,N,8,1” AS #1

100 REM Instruct MINT to accept data
110 PRINT #1, “LOAD 3” + CHR$(10);

120 GOSUB 2000 : REM Pause a while

130 ? “Loading. Please Wait...”

MN12604-18 7/98

150 REM Send the data
160 PRINT #1, “xpos(10)” + CHR$(10);

170 GOSUB 2000

180 FOR a = 1 TO 9 : REM Send 1st 9 elements of data separated by ,

190 PRINT #1, xpos(a);”,”;
200 NEXT

210 PRINT #1, xpos(10); CHR$(10); : REM Send last element

220 GOSUB 2000

230 PRINT #1, “ypos(10)” + CHR$(10);
240 GOSUB 2000

250 FOR a = 1 TO 9 : REM Send 1st 9 elements of data separated by ,

260 PRINT #1, ypos(a);”,”;

270 NEXT
280 PRINT #1, ypos(10); CHR$(10); : REM Send last element

290 GOSUB 2000

300 PRINT #1, CHR$(26) : REM Send EOF

310 CLOSE #1 : REM Close file
320 ? “Done”

400 END

500 REM Read the data

510 FOR a = 1 TO 10

520 READ xpos(a)
530 NEXT

540 FOR a = 1 TO 10

550 READ ypos(a)

560 NEXT
570 RETURN

1000 DATA 10,20,30,40,50,60,70,80,90,100

1010 DATA 100,90,80,70,60,50,40,30,20,10

2000 FOR x = 1 TO 5000 : NEXT : RETURN

Note the use of ‘chr$(10);’ to add line breaks. The semicolon suppresses the
carriage return, line break combination.

cTERM can also be used to upload and download data during program execution. When
cTERM requests array data to be downloaded (load), for example, it will send down the
string “LOAD” followed by “3” for array data and wait for the reply “Ok 3” from the
controller. The following MINT program will load data when requested by cTERM:

MN1260 4-197/98

LOOP
{ statements }

REM L Received, therefore load data

IF INKEY = ‘L’ THEN GOSUB loadData

{ statements }
ENDL

END

#loadData
TIME = 0

REPEAT

REM IF 3 received for array, accept the data

IF INKEY = ‘3’ THEN PRINT “Ok 3”: LOAD 3: EXIT
REM Timeout after 1000 milli-seconds

UNTIL TIME > 1000

RETURN

The program on receiving ‘L’ will call the subroutine to load data. On receiving the 3, it
will acknowledge the instruction and load the data. If ‘3’ is not received, the routine will
time out. Note the use of the TIME keyword to give a 1000 milli-second time out period.

It may be necessary to upload and download data from your own front end program. The
Applications and Utilities diskette provides upload and download routines written in the C
programming language for this purpose. These routines allow you to upload and
download programs and array data and include the routines for the checksum calculation
to ensure correct transmission.

Note: The MINT Interface Library is a range of functions and libraries
for Windows platforms for code development under C/C++, Borland

Delphi and Microsoft Visual Basic. The MINT Interface Library provides
more functionality than the example files included.

This can be purchased separately.

MN12604-20 7/98

4.6 Relational and Mathematical Operators
A wide range of powerful relational and mathematical operators are available in MINT.
These are used to construct expressions for conditional statements and loops, and to
evaluate expressions:

* / + - Maths operators

> Greater than

< Less than

= Equals

>= Greater than or equals

<= Less than or equals

<> Does not equal

MOD/% Modular arithmetic

AND/& Bitwise and logical AND

OR/| Bitwise and logical OR

~ Toggle all the bits in a byte

NOT/! Unary not

ABS() Absolute value of number

INT() Integer value of number

COS() Cosine of number

SIN() Sine of number

TAN() Tangent of number

When an expression is evaluated certain operators have precedence over others . For
example, the expression 2+3*4 evaluates to 14, because ‘*’ has a higher precedence than
‘+’. All expressions in brackets are evaluated first. The full range is precedence,
including arithmetic operators, is:

Highest ()
NOT/! ~

* / %

+ -

< > <= >=
= <>

AND/&

Lowest OR/|

4-217/98 MN1260

All relational and logical operators are supported within expressions. These can be used
to construct very powerful conditional statements with ease:

IF IN1 AND (IN2 OR POS > 100) THEN {statement}

Motion variables that can be read are valid within conditional statements, for instance:

PAUSE POS > 50 OR IN1 = 1

will suspend program execution until the position is greater than 50 or input one is high.
Any expression or constant that is non zero is defined as true and any that is zero is
defined as false. This gives the user a lot of flexibility in the termination of loops.

count = 1

WHILE IN1 AND count < 100

count = count + 1
...

ENDW

will terminate when digital input 1 goes low or count reaches 100.

4.6.1 Performing Bitwise Operations

Logical operators AND/& and OR/| can be used for more than simple comparisons, since
they actually perform bitwise operations on the variables. For instance, consider the
expression:

5 & 6

is evaluated to 4 i.e. in its binary representation:

0101 & 0100 = 0100

The AND/& operator can therefore be used to mask inputs in conditional expressions:

PAUSE IN AND 12

PAUSE IN2 = 1 OR IN3 = 1

are equivalent since 12 (1100 binary) masks off the lower bits of the inputs (IN is a four
bit binary representation of digital inputs one to four). The advantage of the first option is
that it will execute faster. A binary constant could be used to make the expression more
readable:

PAUSE IN AND 01100
PAUSE IN AND 12

are equivalent.

MN12604-22 7/98

OUT = OUT & 15
will clear the digital output bits 4 to 7 leaving bit 0 to 3 intact.

OUT = OUT | 15

will set output bits 0 to 3, leaving bits 4 to 7 intact where OUT is used to set the eight
digital output bits. Reading OUT will return the last value written to the outputs.

4.6.2 Trigonometric Functions

The trigonometric functions SIN, COS and TAN are available using the keywords SIN,
COS and TAN. There are no inverse functions.

Due to the inaccuracy of floating point numbers in MINT, the values returned from the
trigonometric functions are scaled by a factor a 1000. For example:

SIN 30
will return 500.

All the functions will accept an angle in the range of 0 to 360 degrees. Lookup is
performed on a 90 degree table with 1000 elements. This will give an accuracy of approx.
1/10th of a degree.

The angle can be expressed as any valid MINT expression but brackets must be used as
follows:

SIN 90 + a

is not the same as:

SIN(90 + a)

The first expression is equivalent to:

(SIN(90)) + a

MN1260 5-17/98

5. Program Control

5.1 Conditional Statements
Three conditional statements are supported in MINT.

• IF .. THEN
• IF block structure.

• PAUSE

5.1.1 IF ..THEN statement

Format:

IF <condition> THEN <statements>

The simple IF .. THEN statement is the same as standard versions in Basic. If the
condition is true the statements following THEN and up to the end of the line are
executed. The condition can be any valid expression, full details of the alternatives are
given in the section on relational operators.

Examples:

IF POS[1] > 100 THEN SP = 20

IF (a > 12) AND (in1 OR (b > 20)) THEN GOSUB label1
Multiple statements are separated by colons if they are to be executed in the same if
statement.

Example:

IF IN3 THEN STOP : PAUSE IDLE : OUT0 = _off

Note that there is no ELSE statement with the simple IF statement, the IF block structure
must be used if an ELSE is required.

5.1.2 IF block structure

Whereas the IF THEN statement can only be used to conditionally execute a single line of
commands, the IF block structure can execute a series of commands. It has the following
structure.

Format:

IF condition DO

{statements} : REM Execute if condition is true

{ELSE

statements} : REM Execute if condition is false
ENDIF

MN12605-2 7/98

If the condition is true, the statements up to the ELSE or ENDIF will be executed. If the
condition is false, the statements after the ELSE or ENDIF statement will be executed.
The ELSE is optional, statements following the ELSE will be executed only if the
condition is false.

Example 1:

IF INKEY = ‘A’ DO

OUT1 = _on
FOR a = 1 to 10

VR = pos_x(a), pos_y(a) : GO

NEXT

OUT1 = _off
ELSE

JOG = 40, 50

ENDIF

Example 2:
IF IN2 OR !IN4 DO

STOP

PAUSE IDLE[0,1]

OUT1 = _on

ENDIF

IF THEN should be used for execution speed if no ELSE is required and
all the statements can fit onto one line.

IF .. ENDIF constructs can be nested (IF within an IF) up to 30 levels. An example of two
levels of nesting is:

IF a = 5 DO

{statements}
IF b = 2 DO

c = 3

{statements}

ENDIF
{statements}

ELSE

d = 1

ENDIF

MN1260 5-37/98

5.1.3 PAUSE statement

Format:

PAUSE <expression>

The PAUSE keyword stops program execution until condition a is true. This has many
uses in synchronizing motion and waiting for inputs.

For example:

PAUSE IN1 = 1

will halt program execution until input bit 1 reads 1. Alternatively:

PAUSE IN1
is the same as the previous example but is quicker to evaluate and saves code space.

PAUSE !IN1

PAUSE IN1

pause until a rising edge is seen on input bit 1.

PAUSE POS > 300

pauses until POS (axis position) is greater than 300. Due to the finite time that this loop
takes to operate, the axis position upon executing the next line of code may be slightly
greater than 300, especially at high motor speeds.

Example 2:

PAUSE IDLE[0,1]

will pause until both axis 0 and axis 1 are idle. i.e. the mode is zero.

PAUSE with no parameters will stop program execution until a key is pressed at the user’s
terminal. This is useful for operator interaction. Using INKEY to read the keyboard, the
statement:

PAUSE INKEY = ‘y’

will suspend program execution until key ‘y’ is pressed.

PAUSE INKEY
will wait for any key press.

PAUSE INKEY = 0

will clear the serial port buffer.

MN12605-4 7/98

5.2 Loops
Loops in MINT allow the execution of a block of statements a number of times, or while
or until a condition is true. Four loop structures are supported in MINT.

FOR .. NEXT

REPEAT .. UNTIL

WHILE .. ENDW

LOOP .. ENDL

5.2.1 FOR .. NEXT loop

The FOR .. NEXT loop executes a fixed number of times set by the value of an index
variable, a step size and start and stop values for the index. The increment or decrement
of the index on each iteration is defined by the STEP keyword. The start and end values
can be any valid expression. All FOR loops are terminated with a NEXT statement.
Unlike the standard implementation of BASIC you must not append the index name after
the NEXT statement, doing so will generate an error message.

Format:

FOR index = <expr1> TO <expr2> {STEP <expr3>}

{statements}

NEXT

Below is an example of a FOR loop used as the index in a look-up table.

FOR a = 1 TO 20 STEP 2

VA = pos_x(a), pos_y(a)

GO

NEXT

FOR .. NEXT loops may be nested, up to a level of 8 deep.
See section 5.2.6 for more information on nesting.

Example:

FOR a = 1 TO 100

MA = a : GO

FOR b = 1 to 10 STEP 2 : REM Nesting Level 2
MA = ,b : GO

NEXT

NEXT

MN1260 5-57/98

5.2.2 REPEAT .. UNTIL loop

REPEAT .. UNTIL executes the statements within the loop until the condition after the
UNTIL is true.

Format:

REPEAT

{statements}
UNTIL <condition>

Example:

a = 0

REPEAT

MOVER = 1 : GO
PRINT “Position is: “,POS; : BOL

UNTIL POS > 100

When the UNTIL statement is true, the loop will terminate. A repeat loop will always
execute at least once. The EXIT statement can be used to prematurely terminate a
REPEAT loop.

REPEAT .. UNTIL loops can be nested up to 10 levels.
See section 5.2.6 for more information on nesting.

Example 2:

REPEAT : UNTIL INKEY = 0

this example will clear the serial port buffer. INKEY returns the value 0 when the serial
buffer contents are empty. This can be replaced by:

PAUSE INKEY = 0

5.2.3 WHILE .. ENDW loop

WHILE .. ENDW will execute until the condition after the WHILE becomes false. Unlike
a REPEAT loop which will always execute at least once, a WHILE loop will only execute
if the condition is true.

Example:

WHILE IN1

JOG = A1 - 127

ENDW
STOP

MN12605-6 7/98

jogs the motor at a value set by analog port 1. When input 1 goes low the loop terminates
and the motor will stop.

The EXIT statement can be used to prematurely terminate a WHILE loop.

WHILE .. ENDW loops can be nested up to 10 levels.
See section 5.2.6 for more information on nesting.

5.2.4 LOOP .. ENDL loop

LOOP .. ENDL simply loops round indefinitely, for instance:

LOOP
JOG = IN : REM speed set by IN0..6

IF IN7 = 1 THEN EXIT

ENDL

loops round forever reading the digital inputs and jogging the motor at a speed set by the
binary value of user inputs zero to six.

Example 2:

GOSUB start

LOOP

key = INKEY

IF key = ‘A’ THEN GOSUB teach
IF key = ‘B’ THEN GOSUB replay

IF key = ‘C’ THEN GOSUB saveData

ENDL

provides a simple menu interface. Loops round forever checking the keyboard and acts
accordingly on certain key presses.

The LOOP structure can be terminated with the EXIT keyword.

LOOP .. ENDL loops can be nested up to 10 levels.
See section 5.2.6 for more information on nesting.

MN1260 5-77/98

5.2.5 EXIT statement

The EXIT keyword is used to force the termination of a loop. Program execution
commences on the line following the terminating statement in the loop.

Example:

LOOP

JOG = IN : REM speed set by IN0..6

IF IN7 = 1 THEN EXIT

ENDL

5.2.6 Nesting

It is important to understand the concept of nesting to ensure correct program operation.
This is especially so when using interrupts.

Nesting applies to all the MINT block structures. A block structure is defined as a
structure beginning with an opening statement, such as FOR, executing some statements
and closing the structure with a closing statement, such as NEXT. The opening statement
opens up one level of nesting and its corresponding closing statement closes that level.
The table shows all the MINT block structures including their maximum nesting levels:

Opening Closing Maximum
Statement Statement nesting level

IF..DO ENDIF 30

FOR NEXT 8

GOSUB RETURN 20

LOOP ENDL 10

REPEAT UNTIL 10

WHILE ENDW 10

The following example shows a nested FOR .. NEXT loop and WHILE loop nested to 2
levels:

FOR a = 1 TO 10
REM Nesting level 1
b = 1
WHILE b < 10

REM Nesting level 2
b = b + 1

ENDW
NEXT

MN12605-8 7/98

In the example above, the WHILE statement gives a nesting level of 2, and if the WHILE
expression evaluates to false, i.e. b >= 10, the ENDW statement closes that level.

It is important to realize that MINT restricts the level of nesting for each block structure as
shown in the table above, but there is no restriction to the number of block structures that
can be implemented in a program. As can be seen from the table, most of the block
structures have a maximum nesting of 10. MINT will however allow you to mix these
structures up to a maximum of 30 levels. It is therefore possible to nest 8 FOR loops, 10
REPEAT loops and 10 WHILE loops for example. Subroutines can however be nested up
to 20 deep, i.e. a subroutine can call another subroutine which in turn can call another, up
to the maximum allowed.

Interrupt routines are treated as subroutines and when called will result in an extra level of
nesting, as with GOSUB, until it is terminated with RETURN. Since interrupts can occur
at any time during program execution, it is very important that the maximum possible
level of nesting in the program should conform to the following: Assuming that no
interrupt routine uses block constructs, the maximum number of nesting allowed is:

30 - (number of interrupt routines defined)

The maximum nesting of subroutines is:

20 - (number of interrupt routines defined)

If the level of nesting is at its maximum value when the interrupt routine is called, MINT
will ignore the interrupt request until the nesting level reduces by 1. See section 5.3.2 for
more details on interrupts.

The subroutines #STOP and #ONERROR are considered to be interrupt routines
See section 5.3.

5.3 Subroutines
Subroutines in MINT are called using the GOSUB command. Since MINT does not
support line numbers, all subroutines are referenced by labels. A label is prefixed with a
hash ‘#’ and can be any combination of up to ten alphanumeric characters. If two labels
have the same name, an “Invalid label” error is generated at compile time.

#my_sub

{statements}
RETURN

defines a subroutine called my_sub which is called by:

GOSUB my_sub

MN1260 5-97/98

Example, a subroutine that draws a ‘b’shape on an X-Y table:

#draw_b

REM draw ‘b’
CONTON : REM contouring on

VECTORR = 7.5,0 : GO

CIRCLER = 0,5,180 : GO

CIRCLER = 0,2.5,-90 : GO

VECTORR = 0,2.5 : GO
VECTORR = -2.5,0,180 : GO

VECTORR = 0,-15 : GO

RETURN

The subroutine is called with:

GOSUB draw_b

Note that the hash is not used in the GOSUB statement.

To return execution of the program from the subroutine, the RETURN statement is used.

A maximum of 402 subroutines can be defined within any MINT program.
A subroutine defined in a configuration file cannot be called from within a

program file and vice versa.

5.3.1 Events & Interrupts

MINT reserves a number of labels for event and interrupt handling. MINT supports the
following events and interrupts:

• Error recovery

• Falling edge on a user input

• Stop input going active

• Position latch input activated

2 The memory card expansion option allows a maximum of 80 subroutines to be defined.

This is denoted by /MX on the version number.

MN12605-10 7/98

5.3.1.1 Error Event: #ONERROR

Whenever there is a motion error, MINT will look for the subroutine, #ONERROR. If the
subroutine exists, it is executed. A motion error is one of the following conditions:

• Following error

• Limit error

• External error defined by the error input

• Digital output error condition

This routine is used to recover from the error and put the controller back into a desired
state.

Example:

#ONERROR

IF ERROR.1 = _limit DO

{ drive off limits }
ELSE

RESET : REM Reset controller

RUN : REM and re-execute the program

ENDIF
RETURN

The subroutine is only called when there is a motion error. Limits can be disabled using
the DISLIMIT keyword so that powered movement can be undertaken while beyond the
limits. ENLIMIT or RESET will enable the limits. See section 8.2.1 for more
information on error recovery and ONERROR.

5.3.1.2 Stop Input Interrupt: #STOP

The STOP subroutine, if defined, is called on rising (a transition of 0 to 1 as seen by the
controller – inactive to active state) edge on the STOP input. Under normal operation, the
STOP input will only stop motion and not program execution. By reading the state of the
stop input using the STOPSW/SS keyword, program execution can be paused.

Example:

#STOP

PAUSE STOPSW : REM Wait for stop input
RETURN

MN1260 5-117/98

The #STOP routine will not be called if the #ONERROR routine is called.
#STOP will be called when #ONERROR terminates.

5.3.2 Digital Input Interrupt: #IN0 .. #IN7

MINT allows you to define an interrupt routine for each of the 8 digital inputs. An
interrupt routine is defined by the subroutines #IN0 to #IN7, where #IN0 is the interrupt
routine for digital input 0, #IN1 for digital input 1 an so on. If MINT detects any of these
subroutines, the appropriate routine is called in response to a falling (a transition of 1 to 0
as seen by the controller – active to inactive state) edge on the input. The routine is called
only after the current statement has been completed.

Example of an interrupt routine:

#IN5

REM Interrupt routine for input 5
OUT1 = 1 : REM Write to output 1

RETURN

Notes on interrupts and events:

Interrupt routines are executed only after the current statement has been executed with
the exception of GO, PAUSE and WAIT.

IF IN1 AND IN2 THEN SPEED = 100 : MOVEA = 0 : GO
^ ^ ^ ^

• The points at which an interrupts can occur are marked with ^. A change of state in
the input is sampled once every 2 milliseconds (or 1 millisecond if LOOPTIME is 1).

• Interrupt routines must not include the INPUT statement.

• Interrupts are detected in the servo loop closure and therefore the input must be held
in a constant state for at least 2 milli-seconds for an interrupt to occur (this will
decrease to 1 ms if a loop closure time of 1ms is used)

• Once in the interrupt routine, it cannot not be interrupted by the same input pin until
the routine has issued a RETURN statement. They can however be interrupted by
another input. In an input occurs while being serviced by the interrupt routine, it will
be buffered. Reading IPEND will return the status of all buffered input interrupts.

• If a simultaneous interrupt occurs, MINT uses a priority scheme to determine which
interrupt is serviced first. #IN7 has a higher priority than #IN6 which in turn has a
higher priority than #IN5 and so on. If for example, an interrupt occurs on input 6
and input 3, the interrupt routine for input 6, #IN6, will be serviced before that of
input 3, #IN3. If the interrupts are not simultaneous then an interrupt subroutine can
be interrupted by any other interrupt routine.

5-12 7/98MN1260

• If an interrupt is serviced during a contoured move, the axis may decelerate to a stop
since the next buffered move may not have been set-up.

• Nesting of subroutines must not be at the maximum of 20 allowed by MINT when an
interrupt routine is called, otherwise the program will terminate with an error. See
section 5.2.6 for more details on nesting.

Interrupts can be enabled and disabled using various keywords. The keywords only apply
to the user interrupts and not #STOP, #FASTPOS (DINT and EINT affect the #FASTPOS
interrupt routine) or #ONERROR.

Keyword Description

DINT Disable interrupts including #FASTPOS

EINT Enable interrupts including #FASTPOS

IPEND Interrupts pending

IMASK Interrupt mask.
Allows selective disabling of interrupts

When entering an interrupt routine, the DINT command must be placed immediately after
the label to avoid other pending interrupt routines from being called. For example:

#IN1
DINT

savePos = POS[1]

EINT

RETURN

The user interrupt routines will not be called if the #ONERROR routine is
called. They will be called when #ONERROR terminates.

The interrupt priority is as follows:

Highest #ONERROR

#FASTPOS
#STOP

Lowest #IN0 .. #IN7

With the exception of the user interrupts (#IN0..7), the highest level interrupt must
terminate before the next interrupt can be called.

5-137/98

5.3.2.1 Position Latch Event: #FASTPOS

The #FASTPOS routine, if defined, is called in response to a fast interrupt. The fast
interrupt will also latch all 3 axis positions within 30 micro-seconds and store the values
into the FASTPOS keyword. The #FASTPOS routine has the same latency as user
interrupts.

Example of use:

In a feed to length application, a slip encoder (POS.1) is used to detect product slip by
comparing it with the main machine encoder (POS.0) . To avoid errors induced by the
time delay in reading the two encoder positions in MINT, an output can be used,
connected to the fast position, to latch both positions with in 25 micro-seconds.

LOOP

MOVER = 500 : GO.0 : REM Move product 500mm

PAUSE OFFSET < 15 : REM Wait for last 15mm of product
OUT1 = 1 : OUT1 = 0 : REM Fire fast interrupt

slipError = P1 - P2

INCR = slipError : REM Make up error

ENDL

#FASTPOS

P1 = FASTPOS.0

P2 = FASTPOS.1

RETURN

Alternatively:

slipError = P2 - P1

can be replaced by:

slipError = FASTPOS.1 - FASTPOS.0
which does not require the #FASTPOS routine to be called.

Notes:

• On a servo/stepper controller, the FASTPOS keyword applies only to the servo axis
regardless of the axis set-up configuration.

• The ENCODER value is also latched along with FASTPOS to FASTENC. This can
be used to determine the position of a rotary master axis, for example.

MN1260

5-14 7/98MN1260

5.4 Terminal Input/Output
A number of standard keywords are available to allow programmers and operators to
interact with a MINT program. The simplest operator interaction is by use of switches
connected to the input/output on the controller. For more complex applications, where for
instance the operator must be prompted to perform actions and enter data, a standard serial
terminal can be connected to the RS232/485 port on the master controller. Terminals vary
from the full size screen or PC to small hand sized or panel mounted units.

The controller also supports an operator panel, CAN based for SmartMove of bus based
which frees up the serial port. The keypad and display option is discussed in section 5.5.

Program input and output commands will either accept keyboard input or output
characters to the terminal. Axis related I/O such as the digital inputs and outputs and
analog inputs are discussed in sections 6.11 and 6.12.

The terminal input/output commands are:

Command Function

BEEP Issue a beep at the terminal

BEEN Sound buzzer on keypad when using INPUT

BEEF Do not sound buzzer on INPUT

BINARY Print an 8bit binary string

BOL Send cursor to beginning of line

CLS Clear the screen

CHR Print non-ASCII characters

DISPLAY Display defined variables

INPUT Input a number with optional formatting

INKEY Read a key from the keyboard

LINE Print string at a specified line

LOCATE Locate the cursor on the terminal

PRINT Print a string with optional formatting

PON Turn the command line prompt on

POFF Turn the command line prompt off

TERM Control writing to serial or LCD display

Full details of the keywords is given in section 10. The most popular of these are the
Basic keywords INPUT and PRINT.

5-157/98

5.4.1 PRINT Statement

Strings may be printed with the PRINT command, delimited by double quotes.
Expressions and strings may be separated by semicolons or commas. A comma will cause
the next argument to print directly after the previous one. A semicolon will print the next
argument at the next tab position, where each tab position is at every 8 characters.
Another PRINT statement will cause a line feed.

Example:

PRINT “The present x-y position is”

PRINT “x = “,POS[0];”y = “,POS[1]

Typical terminal output:

The present x-y position is:

x = 25 y = 15

PRINT may be abbreviated to ?. For example:

? a

Example 2:

LOOP : ? POS.0; POS.1; : BOL : ENDL
this will continuously print the position of axis 0 and axis 1 on the same line. This can be
useful for checking that an encoder is correctly wired up.

Expressions can be formatted using the USING parameter. For example:

PRINT 1234.5 USING 5,2

will display:

01234.50

where 5 dictates the number of integer places and 2 the number of fractional places. To
printed a signed number, a negative integer place is given.

Example:

PRINT 1235.5 USING -5,1

will display:

+01234.5

If no fractional part is given, an integer number is printed:

Example:

PRINT 1234.5 USING 4

will display:

1234

MN1260

5-16 7/98

this is the same as:

PRINT INT(1234.5)

The LINE keyword is the same as PRINT but will display a string at the specified line.
This is used for the standard keypad and display and will clear all characters to the end of
the line. For example:

LINE 2, “A = “, A USING 3,2
will print the value of A at line 2 using formatted output. The remaining 11 characters on
the display will be cleared.

The keyword BINARY works like PRINT, except an 8 bit number is printed in its binary
representation. Negative numbers are printed in their two’s complement form.

Example:

BINARY “7 in binary is: “, 7

will display:

7 in binary is 00000111

5.4.2 INPUT Statement

INPUT is similar to standard Basic input supporting an optional string, followed by a
comma, then a variable name. For example:

INPUT “Enter a number”,a

Terminal output:

Enter a number ?
Only numeric input is accepted, any other characters are ignored. If the input string is
invalid the user will be requested to re-enter the number. Pressing return on an empty line
will retain the variable value. Multiple inputs cannot be separated by commas on the
same line as with most Basics.

Input can be formatted using the USING parameter:

INPUT a USING 5,2

will accept input with 5 integer places and 2 fractional places and no sign. Pressing
decimal dot will move the cursor to the number immediately after the decimal place.

Example 2:

INPUT a USING -5,2

will accept input with 5 integer places and 2 fractional places. The input can also be
signed. Pressing ‘-’ will toggle the sign of the input value.

MN1260

5-177/98

Example 3:

INPUT “Enter new pos”, newPos USING 4

will allow a number to be entered with 4 integer places but no fractional places.

5.5 Keypad and Display

The keypad and operator terminal provide a
general purpose operator terminal suitable
for stand alone machines of all types. The
operator terminal is cost effective for simple
functions, such as replacing thumb wheel
switches and providing simple diagnostics,
or may be used as a fully interactive
programming panel for special purpose
machine control. The user interface is
written in MINT, an example of which is
given in the Getting Started Guide.

The keypad interface board (standard on 3 axis servo controllers) allows Hitachi LCD
displays or compatible units to be driven from the controller directly. The board also
provides connection for up to 64 keys arranged on an 8 by 8 matrix using normally open
switches. MINT allows you to define the value of each key in the matrix using a keyword
KEYS, which means that the physical order of connection is not important.

Alphanumeric LCD displays of up to 40 characters by 2 lines or 20 by 4 lines may be
used. Direct ribbon cable connection between the interface board and many popular
displays is possible

A piezoelectric buzzer is attached to the board via three flying leads. A short beep (using
the BEEP keyword) can be used to acknowledge a key press, while a series of beeps can
be used to attract operator attention. The high pitch of the buzzer makes it audible over
general industrial noise from machinery.

5.5.1 Programming the Keypad and Display

MINT software supports the keypad and display as if it were a standard serial terminal.
MINT statements PRINT, INPUT, CLS, LOCATE etc. can be used with the display, BEEP
activates the buzzer. Key presses cause characters to be placed in the serial port buffer so
that they can be read as normal by INKEY and INPUT. The READKEY function returns
the value of the key that is currently pressed. This is an enhancement not normally
available on serial terminals and is very useful for jogging motors when the operator holds
his finger on a key.

MN1260

The keypad and display supports the following terminal I/O keywords:

Keyword Description

BEEP Sound the buzzer

BEEPON Sound buzzer when using INPUT

BEEPOFF Do not sound buzzer on INPUT

BINARY Print a binary number

BOL Send cursor to beginning of line

CLS Clear screen

INKEY Read a key from the serial port buffer

INPUT BASIC formatted input

KEYS Define layout of keyboard

LINE Formatted print to a specified line

LOCATE Locate cursor at column, row

PRINT BASIC formatted print

READKEY Read value of key currently pressed

TERM Direct output to LCD or serial port

The keypad interface makes it easy to build your own
operator panel, using push buttons and a display, which is
exactly suited to your application. Should you require a
custom keypad then contact your distributor for details.

The operator panel incorporates six function keys placed
above and below the display, so that the function of each key
can be indicated by printing a legend on the top and bottom
lines of the display. This allows menu driven operator
interfaces to be written readily, with the function of each

function key changing depending on the menu. The middle two lines are used for
messages or operator prompts.

Care must be taken when writing to the LCD display since the display does not
scroll. If the last character of the display is written to followed by a carriage
return, the entire display will be cleared. Use a comma at the end of a print

statement to suppress line feeding.

5-18 7/98MN1260

5-197/98

Example:

KEYS “”

LOOP
LINE 1, “ EXIT”

LINE 2, “Sample keypad”

LINE 3, “Program”

LINE 4, “SETUP START MANUAL”,

key = 0
REPEAT

key = INKEY

IF key = ‘A’ THEN BEEP: GOSUB setup

IF key = ‘B’ THEN BEEP: GOSUB start
IF key = ‘C’ THEN BEEP: GOSUB manual

IF key = ‘F’ THEN BEEP: END

UNTIL key <> 0

ENDL

#start

REM Code here

RETURN

#start

REM Code here

RETURN

#manual

REM Code here

RETURN

Note the use of BEEP to provide audible feedback to the operator. BEEPON can also be
used for this purpose. Also note the comma at the end of LINE 4 statement. This is used
to suppress line feeding and clearing the screen.

The KEYS statement at the beginning of the program is used to enable the keypad. If a
custom keypad is used, the KEYS keyword is used to define the actual keys on the
keypad. See section 10 for further details.

Using the keypad interface, it is possible to read the currently pressed key using
READKEY. This is unlike INKEY which returns the next keypress in the serial input
buffer. READKEY is useful for jogging motors while a key is pressed.

MN1260

5-20 7/98

Example:

LOOP

IF READKEY = ‘X’ THEN JOG[0] = 10
IF READKEY = ‘U’ THEN JOG[0] = -10

IF READKEY = 0 THEN JOG[0] = 0

ENDL

using the X left and right keys on the keypad, the motor will be jogged left or right while
the key is pressed. When either of the keys are released (READKEY = 0) the motor will
come to a stop.

5.6 Sending Data to an Executing Program

MINT provides two methods of accepting data to an executing program:

• INPUT or INKEY can be used to read the serial port buffer or from the keypad.

• A protected protocol that allows the host computer to read and write data from/to a
pre-defined array variable.

5.6.1 Serial Port/Keypad Buffer

Characters received by the serial port are stored in a 128 character circular buffer until
they are read by MINT. Use of this buffer is totally transparent to the user during normal
printing and input routines in MINT.

The buffer enables you to send information to a card at any time for use in a MINT
program running on board.

By default, MINT receives data from both the keypad and the serial port. To switch
between the 2, use the TERM keyword. For example:

TERM = _lcd

will direct all terminal I/O to the keypad and lcd display only. Note that Ctrl-E can be
used to restore the terminal I/O state back to the serial port.

MN1260

5-217/98

5.6.2 Reading Data from the Serial Buffer using INKEY

Data may be extracted from the serial buffer by the use of INKEY or INPUT keywords.

INKEY is used to read a single character from the buffer. IF no character is present it will
return zero, otherwise it returns the ASCII value of the character. (ASCII is an
international standard defining binary equivalents to alphanumeric characters).

INKEY always returns the uppercase value of the characters A-Z. Thus:

MY_VAR = INKEY

will return the value 65 (the ASCII value of ‘A’) to the variable MY_VAR if the character
‘A’ or ‘a’is present in the buffer.

You can test the value of MY_VAR using a simple IF statement as shown:

IF MY_VAR = 65 THEN PRINT “A received”

an alternative notation, that does not require knowledge of ASCII values is:

IF MY_VAR = ‘A’ THEN PRINT “A received”

Where the character A is enclosed in single quotes to inform MINT that it’s ASCII
representation should be used.

INPUT can be used to read numeric values from the character buffer into MINT variables.
A numeric value is sent down the serial link as its ASCII representation, terminated by a
carriage return (ASCII 13 decimal). For instance to send the value 123.45 you would
send:

123.45

One very important difference between INKEY and INPUT is that INKEY does not stop
program execution. It simply returns a zero if there is no data in the buffer and is
therefore useful for testing if there is data in the buffer. INPUT will wait until it receives
a valid ASCII number terminated by a carriage return.

The following code section shows how INKEY can be used to clear the serial port:

PAUSE INKEY = 0

Example:

The following simple example programs are designed to illustrate the use of INKEY and
INPUT using a terminal emulator program such as cTERM which is included with the
controller.

The program below is a very simple example showing the use of INKEY. It simply loops
around waiting for a character to be received (i.e. a non zero value) and then prints the
ASCII value of the received character. Note use of a question mark, the abbreviation for
the keyword PRINT.

MN1260

5-22 7/98

LOOP
a = INKEY

IF a <> 0 THEN ? a

ENDL

The second example is more complex, it waits for ‘a’ or ‘r’ to be received and then accepts
data which is printed back to the user. In a typical application, this data might be used to
perform a MOVEA or MOVER depending on the data received.

LOOP : REM infinite loop

REM wait until a key is pressed

REPEAT : key = INKEY : UNTIL key <> 0

REM read data
IF key = ‘a’ THEN INPUT var1 : ? “a selected, value is “,var1

IF key = ‘r’ THEN INPUT var2 : ? “r selected, value is “,var2

ENDL

Note the use of the variable key to store the keypress before it is tested.

The READKEY keyword is in conjunction with the keypad option to return the value of
the currently pressed key. Unlike INKEY which returns the next character in the serial
port buffer, READKEY will return the key value while the key is pressed, and zero when
no key is pressed.

Example:

LOOP

temp = INKEY : REM Clear the serial port buffer
IF READKEY = ‘A’ THEN JOG = 1

IF READKEY = ‘B’ THEN JOG = -1

IF READKEY = 0 THEN JOG = 0

ENDL

will jog the motor in a positive direction only while the key ‘A’ is pressed. The motor is
jogged in a negative direction only while ‘B’ is pressed.

MN1260

5-237/98

5.6.3 Host Computer Protected Protocol
MINT provides a protected protocol to
allow the interchange of data between a
host computer and MINT via an array
variable COMMS, which is 99 locations
in length. Data packets are sent from the
host to either place data into one of these
99 locations or to read a location. The
MINT program can read the array
variable and act on the data accordingly.

Example:

COMMSON

LOOP

IF POS > COMMS(1) THEN JOG = -10
IF POS < COMMS(2) THEN JOG = 10

COMMS(3) = POS

ENDL

this example will jog between two end points set by the host computer. The position is
stored in location 3 and can be read by the host.

Example 2:

COMMSON
comms(1) = 0

LOOP

command = comms(1)

IF command <> 0 DO
IF command = 1 THEN SP.1 = comms(2):MOVEA.1 = comms(3):GO.1:PAUSE IDLE.1

IF command = 2 THEN SP.1 = comms(2):MOVER.1 = comms(3):GO.1:PAUSE IDLE.1

IF command = 3 THEN HM.1 = comms(4):PAUSE IDLE.1

ENDIF
comms(1) = 0 : REM Send Ack back to host

ENDL

In this example, the host will transmit a command in comms(1). The data for the move
type is held in indexes 2 to 4. When the moves is complete, the command is set to zero.
This acts as an acknowledgement to the host.

MN1260

5-24 7/98

The COMMSON keyword activates the protected communication and defines the comms
array. Ctrl-E will be disabled and can only be enabled using a special data packet sent by
the host. If cTERM for DOS is used, pressing Shift-F8 will abort protected
communications.

The communications protocol is explained in detail in section 12.

MN1260

6-17/98

6. Motion Specific Features
This section deals with the different modes of motion.

6.1 Torque Control
Servo Axes Only

Torque control is achieved by controlling the current in the motor armature. For this
purpose the amplifier must be configured as a current amplifier i.e. the analog demand
input to the amplifier relates directly to an output current. Motor torque is directly related
to current by the expression:

Torque = Armature Current * Kt

where Kt is the motor torque constant. The armature current will depend on the peak and
continuous rating of the amplifier.

TORQUE will accept any value between -100.0 and +100.0. Where the maximum
corresponds to the peak current from the drive. For example, for a drive with 20A peak
current rating:

TORQUE = -50
Sets the motor current equal to -10A, i.e. 50% of the peak current. Note that setting
torque to 100% will cause the amplifier to deliver peak current continuously, which may
cause it to burn out.

Torque is terminated by the STOP command which puts the controller back into a
stationary positional control mode. This will cause a moving motor to instantly stop. To
avoid jarring the motor, it is recommended that the motor armature is stationary before
STOP is executed. This can be done with a loop:

FOR a = 50 to 1 STEP -1

TQ = a

WAIT = 50
NEXT

STOP

where TQ is the abbreviated keyword for TORQUE.

You can freely change between torque, positional and speed control as the application
demands however you must make sure an axis is idle first. For example:

TQ = 10

WT = 1000

MOVEA = 100 : GO

MN1260

6-2 7/98

will result in a motion in progress error when the MOVEA command is executed.
However, it is possible to enter torque mode from any other mode of motion. For
example:

MOVEA = 100 : GO

PAUSE DEMAND > = 50
TQ = 50

This will move the motor to a desired position until the torque demand to the motor
exceeds 50%. Once exceeded, the controller will enter torque mode.

For velocity controlled drives where the motor speed is proportional to the
analog input voltage, TORQUE is useful for setting an open loop speed

demand, especially during commissioning.

6.2 Speed Control
The JOG keyword provides straightforward speed control, note that this is different to the
SPEED keyword which is used to specify the maximum slew speed in a positional move.
JOG uses positional feedback from the motor, so that varying load will not affect long
term speed accuracy.

Example:

JOG.1 = 30

If the system has been set up to scale factor in revolutions, this will jog the motor at a
speed of 30 revs/sec.

Note that the GO command is not required. JOG may be changed up and down at any
time, the motor will accelerate to the new speed at the rate specified by ACCEL or
decelerate to the new speed at the rate specified by DECEL. Motion may be terminated
by:

JOG.1 = 0 or STOP.1
which both cause controlled deceleration to a stop.

The rate of acceleration/deceleration for JOG is unaffected by the RAMP keyword. The
acceleration and deceleration rates can however be changed ‘on the fly’.

Example 2:

ACCEL = 500,500

JOG = 20, -20

WAIT = 1000
ACCEL = 1000,1000

JOG = -10,10

MN1260

6-37/98

jogs axis 0 at 20 and axis 1 at -20, wait 1 second and then jog at -10,10, ramping to the
new speed at the new acceleration of 1000.

A JOG motion can be executed at any time regardless of the current motion on the axis.
The axis will either accelerate or decelerate from its present speed to the new defined
speed set by JOG. This allows blended motion, from say a positional move to a speed
controlled move. For example:

MOVEA = 0 : GO

PAUSE IN1
JOG = -100

6.3 Positional Control
Positional control functions include:

• Simple single axis positional control (MOVEA/MOVER)

• Two/three axis linear interpolation (VECTORA/VECTORR)

• Two axis circular interpolation (CIRCLEA/CIRCLER)

which are available in both absolute and relative co-ordinates.

Additional positional control is available in Process MINT, in the form of:

• Cam profiling

• Flying shears

6.3.1 Linear Positional Control
In the basic linear positional control mode the keywords MOVEA and MOVER provide
respectively absolute and incremental position control.

MOVEA = 200 : GO

Will cause the controller to move the axis to an absolute position of 200 counts from zero.

MOVER = 100 : GO

Will move the axis a further 100 counts relative to the current position, making 300
absolute. Hence the command:

PRINT POS

Will return 300 as the current axis position (assuming zero error). This is shown in the
diagram:

MN1260

6-4 7/98

Notes

• Reading the OFFSET keyword
will return the remaining vector
length, i.e. how far the axis must
move before coming to a stop.

• Reading MOVEA or MOVER
will return the absolute end
position of the move in progress.
Therefore reading MOVEA for
the previous example will return
300.

The GO keyword is used to initiate motion after the distance for the move has been set up.
This allows different multi axis moves to be synchronized:

MOVEA[1] = 30
MOVER[0] = 40

GO[0,1]

will start axes zero and one together.

During a positional move, the end point of the move can be altered using the INCA and
INCR keywords, standing for increment absolute and increment relative. INCA will set a
new end position in absolute co-ordinates. INCR will set the new end position relative to
the current end position of the move in progress (the current end position can be read
using the MOVEA or MOVER keywords).

Example 1:

On seeing an input, we want to set a new position of the current move equal to the current
position plus a relative distance of 10.

PAUSE IN0 : REM Wait for the input
INCA = POS + 10

PAUSE IDLE

Example 2:

In a one axis rolling feed system, a second encoder, on axis 1, is used to detect slip.
When the material is near the end of its move, we want to check for slip and correct for it.

PAUSE POS < nearEndPos
INCR = POS.0 - POS.1

PAUSE IDLE

MN1260

6-57/98

To use the above example, axis 1 must be put into either SERVOFF.1 (servo off) mode or
turned off using CONFIG.1 = _off. This enables the encoder to read but not to generate a
following error.

INCA and INCR cannot be used to change the end position of interpolated moves.

Reading the OFFSET keyword during a positional move will return the remaining move
length. For example:

MR = 200 : GO.0

? OFFSET

will return 200 i.e. the length of the move in operation.

MR = 200 : GO.0

PAUSE POS >= 170

? OFFSET
will return a value of approximately 30. Note that OFFSET always returns a positive
number regardless of the direction of motion.

The OFFSET keyword is useful in indexing applications to determine how much of the
index is remaining. For example: in an indexing application, an output must be set 30mm
before the end of the move where each index is 100mm in length:

LOOP

MOVER.1 = 100 : GO.1

PAUSE OFFSET.1 <= 30 : REM Wait for 30mm before end
OUT1 = 1 : REM Set output

PAUSE IDLE.1 : REM Wait to stop

OUT1 = 0 : REM Clear output

ENDL

6.3.2 Interpolated Moves

The VECTORR/VECTORA and CIRCLER/CIRCLEA keywords provide interpolated
motion on two/three orthogonal axes, for instance an X-Y table. These keywords are
write only motion variables but are unique in that they always require at least two axes to
be specified. In interpolated moves, the axis speed and acceleration refer not to individual
axis speed, but to the path along which motion is in progress. Before initiating the move,
it is important to ensure that the speed (SPEED), acceleration (ACCEL) and ramp factor
(RAMP) on both axes are the same in terms of quad counts or steps and not scaled units
(millimeters for example). This ensures that the velocity profiles on all axes stop at the

MN1260

6-6 7/98

same time (see section 6.3.5) Both axes should have the same line count/step rate for
correct operation. For example:

SCALE = 100,200

SPEED = 20,20
ACCEL = 1000,1000

the speed and acceleration are not the same in terms of quad counts or steps due to the
scale factor.

SCALE = 100,200

SPEED = 40,20
ACCEL = 2000,1000

is correct.

Note:

• Circular interpolation can only be performed on the first 2 axes (axes 0 and 1) of the
controller.

• Both axes must have the same gear ratio and encoder line count for correct operation.
In the case of circles, a gear ratio of 2:1 between X and Y for example will result in an
ellipse with an aspect ratio of 2:1. A circle cannot be drawn with different gear ratios
on the motors.

6.3.3 Linear Interpolation

Two/three axis linear interpolation is executed with the keywords VECTORR and
VECTORA, where VECTORR is a relative vector move, and VECTORA is an absolute
vector move.

Example:

AXES[0,1]
SPEED = 20;

VECTORA = 30,40 : GO

Executes an absolute linear interpolated move on orthogonal axes 0 and 1 at a speed of 20
along the vector. After the AXES string and SPEED is set up, further moves require just
the VECTORR/VECTORA.

This differs from the command MOVEA:

SPEED = 20;
MOVEA = 30,40 : GO

MN1260

6-77/98

this will give the same absolute end position but the speed will be 20 on each axis, so axis
2 will reach its end point before axis 3.

The above examples make use of the semicolon to set the speed of both axes equal to 20.
Thus:

SPEED = 20;

SPEED = 20,20

are the same.

Example 2:

VECTORR = 100,200,300 : GO

this performs a 3 axes relative
interpolated move.

Example 3:

assuming a starting position of 0,0 the
above can be generated using the
following relative moves:

VR = 20,25 : GO
VR = 20,15 : GO

VR = 40,-15 : GO

VR = 0,-15 : GO

The same moves can be generated using the following absolute co-ordinates:

VA = 20,25 : GO

VA = 40,40 : GO

VA = 80,25 : GO

VA = 80,10 : GO

The final position of a vector move can be read using the
MOVEA or MOVER keywords.

See section 6.3.2.

MN1260

6-8 7/98

6.3.4 Circular Interpolation3

Interpolation MINT only.

A circular arc between axes 0 and 1 of the system can be performed by use of the
CIRCLEA or CIRCLER keywords.

The format for circular interpolation is:

CIRCLER[axis0,axis1] = <centre0>,<center1>,<angle>

<centre0>, <centre1> sets up the centre for motion on this circular axis relative to the
current position, the radius of curvature is the distance from the centre of motion to the
current axis position. <angle> (+/-360.00 degrees) sets up the angular increment for the
circular arc. Positive numbers refer to anti-clockwise motion.

CIRCLEA[axis0,axis1] = <centre0>,<center1>,<angle>
Sets up an absolute circular move where <centre0> and <centre1> are absolute co-
ordinates.

The final position of a circular move can be read using the
MOVEA or MOVER keywords.

Example:

Assuming a starting position of 30,30, the circle can be generated using:

CA = 20,20,180 : GO : REM Absolute Coords

Or:

CR = -10,-10,180 : GO : REM Relative Coords

The major difference between
interpolated positional motion and simple
single axis position control as stated
previously is that RAMP, SPEED and
ACCEL apply not to individual axes, but
to the path along which the X-Y axes of
motion follow. By combining a series of
interpolated moves in an X-Y table
application a complex path formed from
arcs and straight line segments may be
constructed.

See section 6.3.2.

MN1260

3Interpolation MINT only

6-97/98

6.3.5 Velocity Profile

In a positional move the velocity profile may be trapezoidal or ‘S’ shaped. See the figure.
Trapezoidal ramps provide the fastest point-to-point time for a given motor torque, but ‘S’
shaped ramps provide smoother motion with the disadvantage of longer motion times.

In order to give short,
smooth moves, MINT
implements a modified ‘S’
ramp, where the
acceleration increases
rapidly, but tails off more
slowly to provide a smooth
approach to top speed or
final position. The keyword
RAMP determines the
smoothness of the profile,
where 0 is a trapezoidal
profile, and 10 is a very
rounded profile.

The acceleration rate is
controlled with the keyword ACCEL, deceleration rate by DECEL and the maximum slew
speed is controlled by SPEED. If the positional move is so short that the specified
SPEED cannot be attained a triangular velocity profile will result.

SPEED can be changed up and down during a move and the controller will accelerate or
decelerate to the new speed at the specified rate. The acceleration and deceleration rates
can also be altered on the fly. However, the deceleration rate is altered on the fly, if
necessary, in order to stop at the desired end position.

6.3.6 Move Buffer and GO

MINT is a powerful language for motion control allowing simultaneous motion and Input/-
Output or other functions such as waiting for the motor speed to reach a given speed before
starting motion on other axes. This is because MINT only stops program execution when it
can no longer process any more program lines without interrupting a move in progress.

Consider the following code fragment, which shows two absolute moves, the first to
position 10 and the second to position 20:

MOVEA = 10

GO
MOVEA = 20

GO

MN1260

6-10 7/98

MINT will encounter the first statement and immediately execute it, followed by GO
which will start the move. (GO is used to start all positional moves). MINT now
encounters the next move statement and will set it up as the move pending on that axis.
When MINT encounters the next GO statement it will identify that a move is already in
progress on the axis and wait, at this point therefore program execution will stop.

You can see that MINT is always one step ahead of the actual move in progress. This
allows you to start a move on one axis and then execute other statements that might look
at inputs or execute other moves on other axes that start at a specified delay after the first
move.

For example:

MOVEA = 100 : GO

PAUSE VEL > 20
OUT1 = 1

will start a move on the axis and then wait until the velocity of that axis is greater than 20.
After this is true then the program sets digital output one.

It is important that you should understand this concept because it is fundamental to
writing MINT programs. There are some motion commands that are only valid when the
axis is not moving (in IDLE mode), these restrictions are noted against the specific
keywords in Section 10. For instance, acceleration cannot be adjusted during a positional
move, therefore the code fragment:

MOVEA = 100 : GO
ACCEL = 200

will cause the program to abort with an error message:

ERROR: Motion in progress at line xx.

6.3.7 Contoured Moves

The keyword CONTON (Contouring On) allows a series of interpolated moves to be
executed without decelerating at the end of each positional move. Thus the path is traced
out at a constant rate of motion.

Example:

SPEED = 20,20

CONTON

VECTORR = 40,40 : GO
CIRCLER = 20,-20,-90 : GO

PAUSE IDLE[0,1] : REM Wait for axes to stop before

CONTOFF : REM Turning contouring off

MN1260

6-117/98

Assuming a starting position of 40,-20,
this executes a straight line segment on
axes 0 and 1 followed by a circular arc of
90 degrees at constant speed of 20. Note
that it is imperative to set the axis speeds
and accelerations to the same value before
executing the move since these refer to
speeds and accelerations along the vector
of motion.

The contouring routines maintain a
constant vector speed throughout the profile, deceleration will not occur until MINT
detects that the final vector has been reached. This gives rise to the following constraints:

• The speed must be low enough for the total deceleration phase to fit into the final
vector - otherwise the axes will come to an abrupt stop.

• Contouring should only be attempted around smooth shapes. Corners should be
rounded, a right angled corner will jar the machine since one axis must
instantaneously stop and the other instantaneously start.

Contoured moves apply to the card as a whole. It is not possible to set-up
contoured moves on 2 axes and a normal positional move on the third axis.

Only the 2 axis contoured move can be executed.

6.4 Establishing a Datum

The HOME keyword is used to establish a datum position on the axis. This function is
useful for all applications that require a consistent zero point from which moves are
referenced. The HOME function should be incorporated at the beginning of the program,
or in the configuration file. There are a number of alternative methods of establishing a
datum that must be considered at the system design stage:

• In many applications (e.g. a linear table) the zero position may be defined by a limit
switch on the axis end stop or by a separate dedicated home switch that is placed at a
central point on the slide. If homing is to be performed on a limit switch, then the
home input must be connected to the limit input (see the hardware manual).

• The home position can be established on the basis of the opening of contacts on a
home switch, or on the first index pulse of the encoder after opening of the switch.
The first method is quicker but less accurate than the second. However, the second
method requires a three channel encoder, with a separate marker (index) pulse.

MN1260

6-12 7/98MN1260

• With the controller, homing is always performed on the basis of a transition on the
home switch input from closed (connected to ground) to open circuit. For correct
function of the HOME routine you must ensure that the home input is closed circuit
when the function is called. Otherwise, the homing routine will immediately
terminate.

6.4.1 Home Control Word
The use of an index pulse and direction of seek (positive or negative) that the system
moves to find home is controlled by assigning a number to the homing routine as follows:

HOME[axes] = <home_control> {,<home_control> ...}

Where <home_control> is a binary number where bit zero, the least significant bit,
determines index pulse usage and bit 1 determines positive or negative slew direction and
bit 2 determines whether to home on the index pulse only for a rotary system. The binary
notation is shown in the table:

Home Control Word

Bit Number Action

0 1 to datum on home switch and seek index

1 1 to datum in a positive direction, 0 in a negative direction

2 1 to datum on the index pulse only

HOME values are:

Binary value Decimal Constant Meaning
Value

0 0 _neg Negative seek, datum on switch

0001 1 _negindex Negative seek, datum on index

0010 2 _pos Positive seek, datum on switch

0011 3 _posindex Positive seek, datum on index

0100 4 4 Seek index pulse negative direction

0110 6 6 Seek index pulse positive direction

For instance, to perform homing on axis 1 in a positive direction with zero position as the
first index pulse before limit switch closure, using binary notation:

HOME.1 = 011

6-137/98

Usually a homing sequence is followed by PAUSE IDLE to ensure all axes are at their
datum position before continuing. For example:

HOME[0,1,2] = 0,0,0 : REM Datum axes

PAUSE IDLE[0,1,2] : REM Wait for idle
...

Reading the HOME keyword will return the status of the home switch.

Some systems may have two datum positions, one to left and another to the right. To
maintain the same absolute positions, the POS keyword can be used to set a position once
the datum position has been set:

IF homeLeft DO

HOME = 1

PAUSE IDLE
POS = 0

ELSE

HOME = 3

PAUSE IDLE
POS = 10000

ENDIF

This will define one datum point as position 0 and the other as position 10000 counts.
This also assumes that the two datum positions are 10000 counts apart.

6.4.2 Home Sequence

The HOME sequence is as follows

• The axis slews in the specified direction at a rate specified by the HMSPEED keyword
until an open circuit is detected on the home input. HMSPEED should be set low for
datuming.

MN1260

6-14 7/98

• The axis reverses and creeps at HMSPEED/BACKOFF until the switch input closes
again. BACKOFF is a user definable parameter.

• If home_control is configured to perform datum on switch, the position counter is
reset to zero and the routine terminates.

• Otherwise, for datum on index, the axis continues at HMSPEED/BACKOFF until it
detects a transition on the index pulse. The axis stops, but because of the speed of
travel it will invariably overshoot. Therefore, the axis reverses again and creeps very
slowly back until it sees a transition on the index pulse. The position counter is then
reset to zero and the routine terminates.

Example:

HMSPEED = 200,200,200
BACKOFF = 5,5,5

HOME = 1,1,1

PAUSE IDLE[0,1,2]

will set a datuming speed of 200 units/sec. When the home switch is seen, the axis will
backoff at a speed of 40 units/sec. For most applications you can leave backoff at its
default value of 10.

Function of the homing routine is very dependent on correct system installation, reference
should be made to the hardware reference guide before attempting to use this facility.
Establishing which direction is positive often requires a little careful experimentation
during system commissioning. This can be done simply by moving the axis manually
backwards and forwards and reading the position. The following code can be used to do
this:

LOOP : ? POS; : BOL : ENDL

6.4.3 Order of Datuming

In most applications both axes are homed simultaneously for speed. For instance:

HOME.0 = 3

HOME.1 = 3

or:

HOME[0,1] = 3,3

or:

HM = 3;

executes simultaneous homing in a positive direction, on switch, for axes 0 and 1
assuming AXES[0,1].

MN1260

6-157/98

Alternatively:

HOME = _posindex,_posindex

can be used.

In some applications there may be a requirement to datum one axis before the other to
avoid mechanical obstructions. In order to achieve this you must include a PAUSE IDLE
command between the two HOME commands:

HOME.0 = 3 : REM home axis zero
PAUSE IDLE.0 : REM wait for homing to finish on 0

HOME.1 = 3 : REM home axis one

If the limit switches are open circuit at any time other than during homing the drive unit
will cease to function and report a limit switch closure error. This is indicated by an ‘L’
on the front panel status display and by the ERROR keyword which will return 3.

6.4.4 Defining a New Position

After the datum routine is complete, the zero position may be offset by performing a
positional move and executing the keyword ZERO. This keyword zeros the position
counter and establishes the current position as the new axis position.

A suggested code fragment for this is:

HOME.0 = 0 : REM execute homing routine (on switch)

MOVEA.0 = 20000:GO.0 : REM desired new home

PAUSE IDLE.0 : REM wait for end of move
ZERO.0 : REM new zero position

It may be necessary to set a new datum position without actually moving the motor. This
can be achieved by using the POS keyword to set the position. For example:

HOME.0 = 0 : REM execute homing routine (on switch)

PAUSE IDLE.0 : REM wait for end of move
POS.0 = 10000 : REM Set new datum position to 10000

6.5 Pulse Following
The controller has a pulse and direction input that can be used to follow an external pulse
train using the PULSE keyword. Pulse following is useful for master/slave type
applications, or where the drive is intended to replace a stepper system, taking input from
a stepper controller. The format is:

PULSE[axes] = <scaling factor> {,<scaling factor> ...}

MN1260

6-16 7/98MN1260

where the <scaling factor> is a number that determines the gear ratio between the pulse
input and the axis. Note that there is always a natural ratio of 2:1 since the controller
counts both the rising and falling edges of the pulse input. The gear ratio will also depend
on the line density of the encoder.

PULSE = 1

will produce a movement of 2 quadrature counts on the encoder for a single pulse input
(single pulse has 2 edges).

When pulse following is initiated it will ramp up to the incoming pulse speed (read using
PULSEVEL) at an acceleration rate defined by ACCEL.

The pulse input has an associated direction input which causes the pulse counter to count
up or down. In many applications where you are following a machine which does not
reverse, the common practice is to connect just one channel of the master encoder to the
pulse input, which gives 2x multiplication by counting both rising and falling edges. The
direction input should also be tied to either 5V or ground. It is also possible to interface
both channels of an incremental encoder by using an external quadrature decoder chip
such as a Hewlett Packard 2016. This converts the A and B channels into a pulse and
direction signal. MINT also allows direct encoder following via one of the controllers
encoder inputs. This is discussed in section 6.6.

Pulse following mode is terminated by the STOP command or by assigning 0 to PULSE.

Example 2:

PULSE = 2.5, -1
will produce a movement of 5 counts on the motor for a single pulse input on the first
axis, and a movement of 2 counts per pulse input on the second axis but in the opposite
direction.

There are various keywords associated with pulse following. These are:

Keyword Action

OFFSET/OF Perform an offset on the base speed

PULSEVEL/PV Velocity of pulse train

TIMER/TI Read timer (pulse follower input)

WRAP/WR Set reset value of timer

Using the reset counter input on the controller, a marker pulse on an encoder can be used
to reset the internal pulse timer every revolution of the encoder. The maximum number of
counts received from the encoder will therefore be:

line count x 2

6-177/98

hence, for a 1000 line encoder, the TIMER keyword which is used to read the number of
pulses received, will return a maximum value of 2000. The WRAP keyword must be set
to a value of 2000 to notify MINT that the timer is reset every 2000 counts.

The OFFSET keyword is used to perform a positional offset on the base speed during
pulse following. This can be shown in the following example:

Example:

PULSE = 1

WAIT = 1000 : REM Wait to get up to speed
OFFSET = 10 : REM move forward 10

PAUSE MODE = _pulse

OFFSET = -10 : REM Move back 10

These keywords are used in infeed systems and are explained in detail in section 10. An
example of an infeed system is given in the Getting Started Guide.

Using FOLLOW and FOLLOWAXIS, it is possible to position lock the slave axis to the
pulse input. See section 6.6 for details.

6.6 Encoder Following/Software Gearbox
In addition to pulse following, the servo controller also has an encoder following mode.
Using the FOLLOW keyword in conjunction with the FOLLOWAXIS keyword, any axis
on the system can follow any other axis.

Example:

FOLLOWAXIS.0 = 2

FOLLOW.0 = -2

MN1260

6-18 7/98

will set up axis 0 to follow the encoder on axis 2. Axis 0 will then follow at a ratio of 2:1
but in the opposite direction.

Using the previous example, power can be applied to axis 2 and positional moves or speed
control performed on the axis. In this case, axis 0 will follow axis twos movement with a
2:1 ratio. However, it may be that an external encoder must be followed. In order to do
this, the encoder to follow must have its axis turned off. For example:

CONFIG.2 = _off

FOLLOWAXIS[0,1] = 2,2
FOLLOW[0,1] = 1.5,-1.5

both axes 0 and 1 will follow an external encoder with a gear ratio of 1.5:1. Axis 1 will
follow in the opposite direction.

FOLLOW will not ramp up to the
incoming encoder speed but will lock

onto it directly at the given ratio.
This can cause systems to jump.

During follow mode, an OFFSET can be
performed on the following axis. For
example:

FOLLOW = 1
WAIT = 1000 :REM Wait to get up to speed

OFFSET = 10 :REM move forward 10

PAUSE MODE = _follow

OFFSET = -10:REM Move back 10

An application, using FOLLOW, is discussed in the Getting Started Guide.

6.6.1 Clutch Distance
Process MINT supports a defined acceleration and deceleration (clutch) distance on the
slave. This is configured using the MASTERINC keyword. For example:

SCALE = 1,1 : REM Scale in counts

FOLLOWAXIS.0 = 1
MASTERINC.0 = 1000 : REM Acceleration distance

FOLLOW.0 = 1 : REM 1:1 ratio

PAUSE !IN1 : REM Wait for input

MASTERINC.0 = 2000 : REM Change deceleration distance
STOP.0 : STOP following

MN1260

6-197/98

this will accelerate to a 1:1 ratio over a slave distance of 500 counts (MASTERINC/2).
When input 1 is seen, the slave will decelerate over a distance of 1000 counts.

Notes:

• The clutch distance is performed using a flying shear (see section 6.8) during which
MODE will return a value of 15. The status display will show F .

• If the FOLLOW ratio is changed during motion, the axis will change to the new ratio
with an instantaneous acceleration/deceleration.

• The clutch distance mode only operates on axes 0 and 1.

• A MASTERINC value of 1 count will turn off the clutch distance mode.

• When performing a clutch, OFFSET cannot be performed. MODE must equal 9
(_follow). This restriction no longer applies from esMINT v2.71.

6.6.2 High Resolution Software Gearboxes4

Process MINT only

Software gearboxes can be defined using either the PULSE or FOLLOW keywords
depending up on the master source. The actual resolution of the gear box ratio is limited
by the accuracy of MINT scaled integers. For example:

PULSE = 0.8

is equivalent to:

PULSE = 205/256

MN1260

4available in process MINT only

6-20 7/98

which is approximately equal to 0.8008. Therefore, over time, the slave will drift with
respect to the master.

To give a better resolution on the gear ratio for position following (see FOLLOW), the
gear ratio can be expressed as a numerator and denominator using the keywords
GEARN/GR and GEARD/GD. The gear ratio is then expressed as:

gear ratio = GEARN/GEARD

where GEARN and GEARD are both integer value. This allows for resolutions down to 1
part in 10,000. For example:

GEARD = 10000
GEARN = 1

GEARD must be defined before GEARN.
GEARN will begin the software gearbox.

The FOLLOWAXIS keyword determines the source of the master input channel. It
accepts one of the following values:

Value Function

3,4,5 Follow channels 0, 1 or 3 of the 3 channel encoder interface board

0,1,2 Follow axes 0,1 or 2. MASTERINC is scaled by the SCALE factor
on the specified axis.

-1 Follow the demand speed set by the SPEED keyword. This would be
the same as having a constant master frequency input. Note that the
MASTERINC value is not scaled and must be expressed in quadrature
counts.

-2 Follow the PULSE input. Note that the MASTERINC value is not
scaled and must be expressed in quadrature counts.

Like FOLLOW, the software gearbox does not impose an acceleration up to the ratio
velocity and will perform a position lock not velocity lock as with PULSE. However, it is
possible to perform a flying shear up to the velocity ratio by defining a MASTERINC
value. This is best illustrated by the following example:

MN1260

6-217/98

SCALE = 1,1 : REM Scale in counts
FOLLOWAXIS.0 = -2

MASTERINC.0 = 1000 : REM Acceleration distance

GEARD = 10

GEARN = 2 : REM Follow ratio of 0.2
PAUSE !IN1 : REM Wait for input

MASTERINC.0 = 2000 : REM Change deceleration distance

STOP.0 : STOP following

Notes:

• The clutch distance is performed using a flying shear (see section 6.8) during which
MODE will return a value of 15. The status display will show F .

• Once a gear ratio has been set up, the ratio cannot be changed on the fly unlike
PULSE and FOLLOW. A “motion in progress error” will occur.

• The software gearbox only applies to axes 0 and 1.

• A MASTERINC value of 1 count will turn off the clutch distance mode.

• When performing a clutch, OFFSET cannot be performed. MODE must equal 18.
This restriction no longer applies from esMINT v2.71.

MN1260

6-22 7/98

6.7 CAM Profiling5

Process MINT only.

Cam profiling is supported on axes 0 and 1 of the controller.
It is not supported on stepper systems.

In cam profiling, a slave axis is linked to a master axis either through an encoder input,
the pulse timer input or internal counter. For a given move on the master, the slave will
move a pre-defined distance linked to the master position.

To create the
software cam, the
cam is broken
down into discrete
linear moves
(segments). These
moves are then
linked with a
master axis such
that the slave will
move the specified
distance for a
measured move on
the master (creating
a software
gearbox). The cam
segments are
placed in a table
for a background
execution. The following sections gives an example of a cam profile.

MN1260

5Process MINT only. Not applicable to stepper motors.

6-237/98

6.7.1.1 Example of Cam Profiling

The above cam can be executed by the following program example. To get finer control
over the cam profile more cam points would be defined in the table.

REM CAM Profile using CAM Tables

REM CAM positions given in absolute terms

DIM CAM0(20) =
18,2207,6680,13000,20527,28473,36000,42320,46793,49000,

48793,46320,42000,36473,30527,25000,20680,18207,18000

REM Configuration

RESET
SCALE = 1;

FOLLOWAXIS[0] = 1 : REM Master axis is axis 1

ACCEL = 10000;

SPEED = 1000;

REM Setup a move on axis 1 for axis 0 to follow
MOVEA[1] = 1000000 : GO[1]

REM Set master increment to 1000 pulses

MASTERINC = 1000

REM Move the CAM once using absolute co-ordinates

CAMA[0] = 0
PAUSE IDLE

MN1260

6-24 7/98MN1260

6.7.2 Cam Tables

A cam cycle is broken up into a series of segments which make up the cam profile. The
segments are placed into a table which is executed in the background allowing full use of
MINT. A cam table is set-up in the array variable cam0 (cam1 is used for axis 1) where
the normal MINT syntax applies to the array. For example:

DIM cam0(11) = 10,10,20,30,20,10,20,30,10,20,30

where the first value determines the number of points in the cam profile and each
subsequent value defines a cam segment. A cam segment can be given in either relative or
absolute position. The actual move will be determined by either the CAM or CAMA
keyword.

Before the cam can be executed, it must be linked to an external source by using both the
FOLLOWAXIS and MASTERINC keyword. The FOLLOWAXIS keyword determines
the source of the master input channel. It accepts one of the following values:

Value Function

3,4,5 Follow channels 0, 1 or 3 of the 3 channel encoder interface board

0,1,2 Follow axes 0,1 or 2. MASTERINC is scaled by the SCALE
factor on the specified axis.

-1 Follow the demand speed set by the SPEED keyword. This would
be the same as having a constant master frequency input. Note
that the MASTERINC value is not scaled and must be expressed
in quadrature counts.

-2 Follow the PULSE input. Note that the MASTERINC value is not
scaled and must be expressed in quadrature counts.

The MASTERINC (master increment) keyword is used to determine the distance over
which the slave (the cam) will move over. For example, if a cam move segment is 250
and MASTERINC is 500, the cam will move 250 counts over 500 counts on the master.
For a cam table, MASTERINC applies to each cam segment in the table. If different
MASTERINC values are required for each individual cam segment, the master increment
values can be defined in a table minc0 (minc1 for axis 1), where the table is a standard
MINT array. For example:

DIM minc0(10) = 10,20,30,40,50,60,70,80,90,100

6-257/98

Notes on cam and minc tables:

• The first element in the cam table defines the number of cam segments. All
subsequent values define the cam segments. This allows variable length cam tables to
be defined with ease.

• The values given in the minc0 array are defined as quad counts whereas the values
given in the cam0 array are scaled by the scale factor, SCALE.

• The number of points in the minc table is given by the number of points in the cam
table. The first element in the minc table is not used to define the number of move
segments.

• Master positions in the minc table are defined in relative terms.

• A cam segment must be defined to take no less than 4ms to execute (given a 2ms loop
closure time).

The keywords CAM and CAMA are used to start a cam profile on a cam table (cam0 or
cam1). The CAM keyword defines all the values in the table as relative moves whereas
CAMA treats all the values as absolute moves. For example:

CAM.0 = 0

will execute a cam for axis 0 on the cam table cam0. The cam will finish when the last
cam point has been executed.

CAM.1 = 1

will execute a cam for axis 1 on the cam table cam1. The cam will execute indefinitely.
Once the last cam segment has been executed, the cam motion will begin again.

To execute a cam using absolute values in the table, use the CAMA command in the same
way as the cam command.

An absolute cam only defines absolute positions within one cam cycle and not
to an absolute motor position. An absolute cam always assumes a starting

position of zero. Defining zero as the first cam segment will result in the cam
waiting for the Master Increment length.

MN1260

6-26 7/98MN1260

The value passed to CAMA and CAM will determine their action. Any of the following
values are accepted:

CAM Function
Value

0 One shot cam

1 Continuous cam. Cam table restarts when end is reached

2 One shot cam triggered by a fast interrupt.

3 Continuous cam. Triggered by a fast interrupt.
Successive fast interrupts will reset the cam.

+4 Adding 4 to the CAMA keyword will reference all absolute
positions to the motor position and not the cam.

Stopping a continuous cam at the end if its profile can be achieved by setting up a one
shot cam as follows:

CAMA = 1 : REM Continuous cam

PAUSE IN1 : REM Wait for input 1
CAMA = 0 : REM Finish current cam, execute next cam and then stop.

alternatively:

CAMA = 1 : REM continuous cam

PAUSE IN1 : REM Wait for an input
PAUSE CAMINDEX = maxIndex : STOP

this will stop when the last cam index has been executed without executing an extra cam
profile.

Notes on cam profiling:

• The master must be moving in one direction only.

• The cam will move in the direction defined by the cam segment regardless of the
master direction.

6-277/98

6.7.3 Synchronizing Cams with the Fast Interrupt

A cam movement can be synchronized with the fast interrupt. This can be set-up as either
a one shot or a continuous cam that is reset on every fast interrupt. This is achieved by
using the CAM or CAMA keyword as follows:

CAM = 2

This will enable a one shot cam by waiting for the fast interrupt before starting the cam.
Once the cam has executed, the mode will return to idle. Any subsequent fast interrupts
will start the cam again. If a fast interrupt occurs during the cam motion, the cam will
reset and begin again. Use the STOP command to terminate a one shot cam.

CAM = 3

will enable a continuous cam that begins on a fast interrupt. If a fast interrupt occurs
during the cam motion, the cam will reset and begin again.

In both cases, the cam will begin within 2ms of the fast interrupt.

The cam should only be synchronized with the fast interrupt when the cam speed
approaches zero, otherwise a glitch in the cam profile may be noted.

TRIGGER can be used to synchronize the cam with a digital input (IN0 .. IN7). See
section 6.9 for details.

6.7.4 Multiple Cam Tables

Multiple cam tables can be defined using the CAMSTART and CAMEND keywords
which define the start and end points for a Cam table. The first element in the cam table
is still used to define the number of elements in the cam, but if a value of zero is given,
the cam table will execute all points up to CAMEND. The starting cam segment will be
defined by the CAMSTART keyword. For example:

CAMSTART = 10

CAMEND = 20

DIM cam0(21) = 0,10,20,30,40,50,60,70,80,90,100,

100,90,80,70,60,50,40,30,20,10

When the cam is started using either the CAM or CAMA keyword, the cam segments 10
to 20 are executed.

Note that it is assumed that the first element has an array index value of 0, and the cam
segment values start at 1. The actual start cam segment value will be given by:

v = cam0(CAMSTART + 1)

MN1260

6-28 7/98

CAMSTART and CAMEND only applies to axes 0 and 1. If CAMSTART or CAMEND
are defined during a cam motion, they will take immediate effect. The order in which
CAMSTART and CAMEND are defined is important for the correct operation of the cam.
For example, if CAMSTART is currently defined as 20 and CAMEND as 29, to define a
new cam table at points 10 to 19, the following would used:

CAMSTART = 10

CAMEND = 19

To define a new table at cam points 30 to 39, the following would be used:

CAMEND = 39

CAMSTART = 30

Ideally, you should wait for the previous cam to finish before defining a new one. This
can be achieved by pausing on the CAMINDEX.

PAUSE CAMINDEX = 29

CAMEND = 39

CAMSTART = 30

6.8 Flying Shears6

Process MINT only

Flying shears allow the position lock of master and slave axes over defined distances with
imposed accelerations/decelerations. This is best illustrated with the diagram as shown.

The master is moving at
constant velocity. It is required
that the slave produces the
trapezoidal profile as shown
where the slave will reach a
ratio of 1:1 with the master
over a pre-defined distance.
Starting with a slave velocity of
zero, the slave must move over
half the distance of the master
in order to reach a ratio of 1:1.
This is shown in the diagram where the slave distance is B1 and the master distance is
B1+B2 (where B1 = B2). Both the slave and master velocities are locked for a given
distance C. In order to decelerate to a stop, the slave must cover half the distance of the

MN1260

6Process MINT only. Not applicable on stepper motors.

6-297/98

master as shown. The slave distance is D1 and the master distance is D1 + D2 (where D1
= D2). If the slave is required to stop for a given distance on the master (E), a slave
distance of 0 is requested.

Within MINT, the slave distance is given by the FLY keyword, and the master distance by
MASTERINC. In order to fulfill the profile given in the diagram, the following MINT
program would be used:

MASTERINC = B1+B2 : REM B1 = B2

FLY = B1 : GO : REM Accelerate
MASTERINC = C

FLY = C : GO : REM Slew speed

MASTERINC = D1+D2 : REM D1 = D2

FLY = D1 : GO : REM Decelerate
MASTERINC = E

FLY = 0 : GO : REM Wait for a master distance of E

Note that for the slave to accelerate from zero speed to a 1:1 ratio with the
master, it must cover half the master distance i.e. FLY = MASTERINC/2.

For the slave to decelerate from a 1:1 ratio with the master to zero velocity, it
must again cover half the distance of the master, i.e. FLY = MASTERINC/2

(note that FLY is not negative).

Before the flying shear can be executed, it must be linked to an external source by using
the FOLLOWAXIS keyword. The FOLLOWAXIS keyword determines the source of the
master input channel. It accepts one of the following values:

Value Function

3,4,5 Follow channels 0, 1 or 3 of the 3 channel encoder interface
board

0,1,2 Follow axes 0,1 or 2. MASTERINC is scaled by the SCALE
factor on the specified axis.

-1 Follow the demand speed set by the SPEED keyword. This
would be the same as having a constant master frequency
input. Note that the MASTERINC value is not scaled and
must be expressed in quadrature counts.

-2 Follow the PULSE input. Note that the MASTERINC value
is not scaled and must be expressed in quadrature counts.

MN1260

6-30 7/98

When calculating the flying shear segments, it is best to think of the area under the
velocity profile graph for both the master and slave. Consider the diagram below. The
master is feeding material at a continuous rate. The slave is required to feed the material
through a set of rollers. At a pre-defined distance the material must come to a stop and a
cutter engaged. This will require a back log of material over the stop distance which must
be made up.

In the diagram above, the total material length on the master is given by:

H1 + H2 + B1 + C1 + B2 + D + E2 + E1 + F

The distance covered by the slave is given by:

H2 + B1 + G1 + C1 + C2 + B2 + G2 + D + E2

The slave must make up the distance it has lost in coming to a stop. Therefore:

(G1 + C2 + G2)slave = (H1 + E1 + F)master

If H2 = G1, C1 = C2 and G2 = G1 then the MINT program for the above profile will be:
(substituting numbers for the denoted areas)

AXES[0]

MASTERINC = 200 : REM H1+H2+B1

FLY = 200 : GO : REM H2+B1+G1 - 2:1 ratio between slave and master
MASTERINC = 200 : REM C1

FLY = 400 : GO : REM C1 + C2 - Slave must cover 2x distance of master

MASTERINC = 100 : REM B2

FLY = 150 : GO : REM B2 + G2 - Decel to 1:1 ratio between slave and master
MASTERINC = 400 : REM D

FLY = 400 : GO : REM D - 1:1 ratio between slave and master

MASTERINC = 100 : REM E1 + E2

FLY = 50 : GO : REM E2 - Decelerate to zero speed
MASTERINC = 200 : REM F

FLY = 0 : GO : REM - Remain stationary for master position

where the total move length for master and slave is 1200 units.

MN1260

6-317/98

Notes on Flying Shears

• 10 milli-seconds should be allowed in order to set-up a flying shear segment, where a
flying shear segment is defined as a FLY/MASTERINC combination.

• The master position must be uni-directional.

• The slave (fly) will move on the direction defined by the FLY keyword regardless of
the direction of the master. In order to move the slave backwards, the negative FLY
must be given.

• From esMINT v2.71, an OFFSET move can be placed on a FLY (or multiple FLY)
segments.

6.8.1 Example of a Flying Shear
A common problem in industrial automation is to perform an operation on a continuously
moving web, extrusion, or other material which is generated by a continuous production
process. Examples of this type of operation are cropping metal produced from a rolling
mill, slitting plastic bags across their width or placing labels on a backing strip.

Each application has the common requirement that the operation must be performed at a
regular distance on the moving web. The usual method of achieving this is to use a linear
slide which moves forward in synchronism with the web during the operation and returns
quickly to datum before commencing the next operation.

At a programmable count the controller causes the servo motor to accelerate to web speed
before turning on an output that causes the shear to operate. The servo motor then
decelerates to a stop and reverses to return the slide to the start position. The velocity of
the linear slide with respect to the position of the web for one cycle is shown on the
figure. This profile is repeated for each operation on the web.

The FLY keyword in MINT is used to perform this velocity profile. The FLY function
allows the position of the slave axis to be specified with respect to the position of a master
axis so that the two are locked together.

This is analogous to a mechanical cam and push rod assembly, the major advantage being
that the software system is mechanically simpler and can be changed (i.e. different lengths
of cut) at the press of a button. The controller can also synchronize other machine
functions in a similar way to a PLC and keep track of the total amount of material cut etc.,
which can be displayed on an operator message panel.

The following MINT program specifies each movement segment in terms of the distance
to be moved on the linear slide for a given distance on the master encoder. The shear and
product are therefore always in correct synchronism even if the speed of the product varies
throughout a cycle.

MN1260

6-32 7/98

Example:

A flying shear is
required to cut product
every 52 units. The
shear can travel over a
distance of 20 units,
of which 13 units are
used in this example.

Hint:

Define the flying shear such that the master travel, given the forward and reverse travel of
the knife, is less than the minimum cut length. To change the cut length only the dwell
time between knife moves needs to be altered. Alternatively, the knife return profile can
be altered.

AXES[0]
FOLLOWAXIS[0] = 1 : REM Follow axis 1
GOSUB main
#main

LOOP
MASTERINC = 20
FLY = 0 : REM Wait 20 units on the master
GO
MASTERINC = 3 : REM Accelerate to 1:1 ratio over 3 units of master
FLY = 1.5
GO
MASTERINC = 10 : REM Follow at 1:1 over 10 units of master
FLY = 10
GO
OUT0 = 1 : REM Activate the shear (note buffered moves)
MASTERINC = 3
FLY = 1.5 : REM Decelerate to stop over 3 units of master
GO
OUT0 = 0 : REM De-activate the shear (note buffered moves)
MASTERINC = 8 : REM Return to start
FLY = -6.5
GO
FLY = -6.5
GO

ENDL
RETURN

MN1260

6-337/98

Note the placement of the OUT0 statements. These appear to occur at the wrong fly
segment, however, due to the nature of MINT with buffered moves, it is necessary to place
the OUT0 statement after the fly segment following the segment where you require the
command to be performed. For example:

FLY = 10 : GO

OUT2 = 1 : REM Executed immediately, before FLY = 10 has completed ie
: REM when FLY = 10 starts

FLY = 20 : GO

OUT1 = 1 : REM Executed when FLY = 20 has started, ie when FLY=10

: REM has finished

The total movement of the material is given by:

20 + 3 + 10 + 3 + 8 + 8 = 52

The first cut will however be short by 29 units, since the shear will cut at 20 + 3 units.

The shear moves 1.5 units to accelerate to a ratio of 1:1, moves 10 units with the material
and decelerates over 1.5 units, giving a total distance on the slave of 13 units.

Note that to ramp up to a ratio of 1:1, the ratio of MASTERINC to FLY is 2:1.

6.9 Triggered Moves

Process MINT only

The TRIGGER keyword allows a move to be defined but not executed until an input goes
low. TRIGGER uses the syntax as shown:

TRIGGER.axis = <input channel>

For example:

TRIGGER.2 = 1

MOVEA.2 = 100 : GO.2

When input 1 goes low, axis 2 will move to position 100. This replaces the following
code:

#IN1

MOVEA.2 = 100 : GO.2
RETURN

The advantage of using TRIGGER over an interrupt, is that the move is guaranteed to start
within 1 servo cycle (2ms typically).

MN1260

6-34 7/98

TRIGGER applies to all move types: CAM, CAMS, FOLLOW, GEARN/GEARD, JOG,
MOVEA, MOVER, OFFSET, PULSE.

Example 2:

MASTERINC.0 = 100

GEARD.0 = 15
TRIGGER.0 = 7

GEARN.0 = 1

will begin a high resolution gearbox in input 7.

Reading the TRIGGER keyword will return the mode of motion (see section 6.10) which
is awaiting the trigger signal. If no move is awaiting a trigger signal, it will return -1.

A move can be triggered of the fast interrupt using a TRIGGER value of 8. If a CAM,
FOLLOW or FLY is triggered off the fast interrupt, the distance covered by the master
from the time the position was latched to the point where the move starts is taken into
account.

A triggered move can be masked off using the IMASK keyword. For example:

IMASK = IMASK AND 0011

TRIGGER.0 = 2

MOVEA = 0 : GO

When the input goes low, the triggered move will be held pending until the appropriate bit
in IMASK (bit 2 in the example) is set.

IMASK = IMASK OR 0100
IPEND can be used to clear down the trigger event.

6.10 Mode of Motion
During positional, speed or torque control, the mode of motion can be interrogated using
the MODE keyword. The MODE values are given in the keyword section under MODE.

This keyword is primarily useful for detecting when a positional move is complete, since
the MODE will always return to zero at this point. Imagine that you wish to set output
one after the finish of a relative move:

MOVER = 150 : GO : REM mode is set to 2

PAUSE MODE = 0 : REM wait for motion to finish

OUT1 = 1 : REM set output one

MN1260

6-357/98

Alternatively:

PAUSE MODE = 0

can be replaced by:

PAUSE IDLE

Example 2:

PAUSE MODE.0 = 0 AND MODE.1 = 0

can be replaced by:

PAUSE IDLE[0,1]

Example 3:

PULSE = 1 : REM Pulse following mode at ratio of 1:1

LOOP

PAUSE IN1 : REM Wait for a falling edge on input 1

PAUSE !IN1
REM Perform a positional offset on seeing the input

REM signal

OFFSET = offsetValue

REM Wait for offset to finish
PAUSE MODE = _pulse

ENDL

this will follow an incoming pulse train and perform a positional offset on seeing digital
input 1. The use of “PAUSE MODE = _pulse” will wait for the offset to finish execution.

The 7 segment status display also indicates the mode of motion. Section 8.3 covers this in
detail.

6.11 Digital Input/Output

The controller has 8 general purpose digital inputs and 8 general purpose digital outputs
that are software controlled from MINT. The keywords IN and OUT are used to read and
write to the I/O. Alternatively, interrupts can be set-up on the inputs using the #INx
subroutines (see section 5.3.2).

MN1260

6-36 7/98MN1260

7Connect to power if PNP outputs are used.

6.11.1 Digital Inputs

Digital inputs are read using the IN keyword. To return the value of digital input three to
variable a:

a = IN3

If input three was active, a would be set equal to one, otherwise it would equal zero.

The code:

a = IN

will return the binary value of the inputs zero to seven to the variable a. Input zero
represents the least significant and input seven the most significant bit.

For example, if the pattern of the inputs was:

Input 0 1 2 3 4 5 6 7

Value 0 1 0 1 0 1 0 1

the value of a would be set to 10101010 binary or 170 decimal. This feature can be very
useful for many applications, since it can be used to directly control the SPEED or
position of an axis, or to initiate a programmed sequence.

Individual bits can be read by adding the bit number to the IN keyword. For example:

a = IN1

will assign the value of input bit 1 to the variable a.

Using the dot notation, it is also possible to read a bit using a variable as follows:

a = 1

b = IN.a

this will read bit value 1 into b.

Interrupts routines can be called in response to a falling (a transition of 1 to 0 as seen by
the controller – active to inactive state) edge on the input. See section 5.3.2 for details.

6.11.2 Digital Outputs

Digital outputs are set in a similar manner to other write-able motion variables:

OUT2 = 1

turns on the output transistor on output two (i.e. connects the output to ground7)

6-377/98

Outputs zero to seven may be set simultaneously by the use of the OUT keyword, this
works in a similar manner to the IN keyword, the outputs are set to the digital value of the
number or variable assigned to them.

If a number greater than 255 is written to the outputs, an error is generated and the
following message is printed:

Out of range on line XX.

Individual bits can be set by adding the bit number to the OUT keyword. For example:

OUT2 = 1
will set output 2.

Using the dot notation, it is also possible to set an output bit using a variable as follows:

a = 1

OUT.a = 0

will clear output bit 1.

An I/O expansion module can be used to increase the number of I/O lines by
24 inputs and 24 outputs. These are referenced using the XIO keyword.

SmartMove I/O can be expanded with CAN modules.
Contact your distributor for details.

On SmartMove, the outputs are protected against over current, short circuit and over
temperature. In the event of an error, the ONERROR routine will be called with an
ERROR value of 13.

6.12 Analog Inputs

Depending on the controller, two or three analog inputs are provided, which have a
resolution of 10 bits (one part in 1024) in the voltage range +/-10V or 0 to 5V. These are
individually jumper selectable (see Hardware Guide). Analog inputs are very useful in a
large number of applications.

A low cost manual control positioning system for an x-y table could be based around a
joystick fitted with two potentiometers. The two potentiometers are connected to analog
inputs one and two on the controller. The following code fragment will loop around
(while input one is active) testing analog inputs A1 and A2 and jogging the motor at a
speed set by these inputs. Assuming that the scale factor is set such that SPEEDs are in
mm/sec on the table, this program gives a SPEED range of +/-512 mm/sec.

MN1260

6-38 7/98

WHILE IN1
JOG = A1 - 512 : REM 0V input produces..

JOG = ,A2 - 512 : REM ..zero speed

ENDW

closing a switch connected to input one will cause the loop to terminate.

Section 4.5.2, on array data, shows an example program using the above to store a series
of x-y positions in an array for later use.

The following section describes a use for analog inputs using a joystick.

6.12.1 Joystick Control in MINT/3.28

Stepper Controllers Only

Since MINT/3.28 is not a programming language, but is under host control, it is difficult
to implement joystick control using the analog inputs. For this reason, commands are now
available in MINT/3.28 for joystick control. Parameters can be set for a deadband, the
analog midpoint etc. The following diagram best explains the operation of the joystick
control:

The regions of operation are:

• DEADBAND: Over this region there will be no movement.

• FIXED SPEED DEADBAND: Over this region, the motor will move at 1 pulse every
second for fine position control.

• NORMAL: Normal operation where the velocity of the motor is related to the analog
input voltage. The maximum velocity is controlled by the SPEED keyword.

MN1260

6-397/98

The following MINT example will illustrate the joystick program as implemented in
MINT/3.28:

REM Joystick control in MINT with deadband

midpoint = 512
deadband = 50

fixedSpeed = 100

LOOP

REM Get the analog input and direction
analogSpeed = A1 - midpoint

dir = 0

IF analogSpeed < 0 DO

dir = 1
analogSpeed = -analogSpeed

ENDIF

REM Check for the various deadbands and set speed accordingly
IF analogSpeed < deadband DO

analogSpeed = 0

ELSE

IF analogSpeed < fixedSpeed DO
analogSpeed = 1

ELSE

analogSpeed = analogSpeed - fixedSpeed

ENDIF
ENDIF

REM Set the jog speed

IF dir DO
JOG = -analogSpeed

ELSE

JOG = analogSpeed

ENDIF

ENDL

MN1260

6-40 7/98MN1260

The commands available in MINT/3.28 for joystick control are:

Name Type Range Default Description

JD Write 0 - 1023 0 Sets the deadband whereby there will be no
movement on the axis

JF Write 0 - 1023 0 Sets the fixed speed deadband

JM Write 0 - 1023 512 Sets the analog input midpoint for bi-directional
control

JS Write 1 - 32767 1000 Factor used for mode 2 of joystick control

JY Write 1 - 2 - Enable joystick mode and set the mode of
operation:
1. Axis speed is related to analog input voltage
2. Axis speed is related to the cube of the analog

input voltage to allow more variable speed
control

There are two modes of operation for joystick control, as controlled by the JY keyword.

Mode1:

The axis speed is related to the following expression:

JOG = analogSpeed - fixedSpeed

using the MINT program above as a reference where fixedSpeed would be set by JF.

Mode 2:

The axis speed to related to the cube of the analog input:

JOG = (analogSpeed - fixedSpeed)3 / JS

as the joystick is moved, the speed will increase more rapidly than with the linear ramp of
mode 1.

Notes:

• The speed for both modes 1 and 2 are dependent on the scale factor (SF).

• The top speed is restricted by the speed keyword (SP)

• Normal operation is resumed after a stop command (ST)

6-417/98

Using cTERM for DOS, the following file can be sent to the controller using the
MINT/3.28 ‘Load File’ option.

C;0;RE;6

C;0;DL;6
W;0;SP;3;5000,5000

W;0;JD;3;50,50

W;0;JF;3;100,100

W;0;JM;3;512,512

W;0;JS;3;3000,3000
W;0;JY;3;2,2

The above parameters will set a deadband (JD) of 50 bits from a midpoint of 512. The
fixed speed deadband (JF) will be between 50 and 100 bits from the midpoint. Mode 2
joystick operation is used.

6.13 Input/Output ‘On the Fly’
MINT can test and respond to inputs during execution of positional moves because it will
continue to run until it detects that a move instruction will interfere with one that is
already executing. Consider the following code fragment:

MOVEA = 100 : REM move first axis

GO.0
MOVEA = ,200 : REM move second axis

GO.1

MOVEA = 200 : REM set-up next move

GO.0 : REM program hangs here

MINT will start the positional move on axis 0, then start the positional move on axis 1. It
will then set-up the next positional move on axis 0 as the move pending, but when it
comes to execute GO[0], the program will stop execution until the move on axis 0 is
complete. Similarly, if a statement GO[0,1] was encountered and a move was in progress
on either axis 0 or axis 1, the program would stop execution until that move was complete.

Because MINT does not stop executing instructions until there is a move pending it is
easy to write applications that perform AND operations while a move is in progress.

An example is glue laying around car windows. In this application, the glue cannot be
turned on until the axis has reached a critical velocity (VEL), otherwise the line of glue
will not be consistently thick. Therefore we must wait until the axis has accelerated
before turning on the glue gun:

MN1260

6-42 7/98

MOVEA = 200 : GO : REM start move
PAUSE VEL > 20 : REM wait until VEL > 20

OUT1 = 1 : REM turn on glue

PAUSE VEL < 20 : REM decelerating to end

OUT1 = 0 : REM turn off glue

There are instances when you may wish to halt the program until the current move is
complete. For instance:

OUT2 = 0

MOVER = 10 : GO : REM relative move
PAUSE IDLE : REM wait for end move

OUT2 = 1 : REM flag end move

In this code fragment the requirement is that output two is not set until the move is
complete. The IDLE keyword will return zero during a positional move and one when
the axis is idle at the end of the move. Therefore PAUSEing on IDLE will hang the
program as required.

For a 2 axis move, the code segment will be:

OUT2 = 0
MOVER = 10,20 : GO : REM relative move

PAUSE IDLE[0,1] : REM wait for end move

OUT2 = 1 : REM flag end move

Using interrupts, it is possible to interrupt program execution to perform another
operation. See section 5.3.2.

6.14 The STOP Input
The STOP input is used to halt motion on all axes. When stop is asserted, motion will
ramp down to a stop at a deceleration rate set by the ACCEL keyword or crash stop in the
case of FOLLOW and cam profiling. If the input is negated (closed circuit) motion will
commence again and the program will continue to run as normal. An S is displayed on
the status display to indicate that motion has been interrupted.

Typically, the STOP input should be wired to the safety guard on the installation, this will
ensure that motion is prevented when the guard is lifted. This is a safety requirement.
Where the application permits, it is recommended that an external circuit breaker is
installed to physically cut power to the motor for maximum operator safety.

MN1260

6-437/98

If the STOP subroutine is defined, this will be called if the stop input is asserted. The
STOP subroutine can be used to pause program execution by reading the state of the stop
input using the STOPSW keyword.

Example:

#STOP

PAUSE !STOPSW : REM Wait for stop input to go low
RETURN : REM Resume execution

The stop input can be configured to initiate a CANCEL on the move in progress. This is
configured using the STOPMODE keyword.

See the Hardware Guide for more details on the stop input.

6.15 End of Travel Limit Inputs
The keyword LIMIT has been provided so that software can directly read the value of the
LIMIT switch inputs on axes 0, 1 and 2. The keyword accepts axis parameters in the
normal manner.

Example:

a = LIMIT.1

returns 1 to variable a if the limit input on axis 1 is asserted, 0 if the input is negated.

Example 2:

a = LIMIT[0,1,2]

returns 1 to variable a if the limit inputs on axes 0, 1 and 2 are asserted, 0 if any input is
negated.

When the limit switches are closed, the motion control algorithms will not allow the
motors to be driven. Therefore the limit keyword has limited use except in the error
handling routine ONERROR. The limits can be disables using the DISLIMIT keyword,
allowing powered movement to be undertaken while beyond limits. ENLIMIT or RESET
will re-enable the limit switches, RESET will also set the position to zero.

MN1260

6-44 7/98

Example:

#ONERROR

IF ERROR.1 = _limit DO : REM Limit on axis 1?
DISLIMIT.1

SERVOFF.1

PAUSE !LIMIT.1

SERVOC.1

ENLIMIT.1
ENDIF

RETURN

this example will, on detecting a limit error, disable the limits, and allow manual
movement off the limits. Power is restored and the limits are enabled.

In many applications it is necessary to have separate limit and home switches. Since the
controller has only one limit input per axis it is best to arrange the active areas of the
switches as shown below:

Hitting a limit switch causes an error which is handled in software by the ONERROR
subroutine. By reading both the state of the limit and home inputs, the left or right limit
switch can be determined as shown in the table:

HOME LIMIT Action

on on Left limit hit

off on Right limit hit

If the home position is midway between the two limits, the active area of the home should
be made to extend to either the right or the left to the limit active area.

In an application where not all 3 axes are used, the redundant axes must have their
respective limit switches grounded (connect to power if PNP inputs are used) for normal
operation. Alternatively the MINT keyword DISLIMIT can be used to disable the
detection of limit switches.

MN1260

7-17/98 MN1260

7. System Software Configuration

Depending upon the controller, each axis can be configured for its particular motor type.
Motor types supported are::

• Servo motors with standard +/- 10V output

• Inverters with 0-10V and direction output

• Stepper motors including micro steppers

The stepper controller only supports stepper motors with no encoder feedback:

Each axis is configured using the CONFIG keyword. The values accepted by CONFIG
are:

Value Constant Motor Type

0 _off Turn the axis off

1 _servo Servo motor

2 _stepper Stepper motor

3 _micro Micro stepper

4 _inverter Inverter 0-10v plus direction

Example:

CONFIG = _servo,_servo,_stepper

this will configure a servo controller for servo motors on the first two axes and a stepper
on the third axes.

Example 2:

CONFIG = _micro;

this configures all 3 axes as micro steppers.

There is no difference between config mode 2 and 3 except the speed and acceleration
defaults are greater than for normal steppers.

7-2 7/98

7.1 Servo Loop
Servo Axes Only

At the lowest level of control software, instantaneous axis position demands produced by
the controller software must be translated into motor demands. This is easy with a stepper
motor since the control program can simply output a series of steps. As long as the
velocity profile and loading is within the motor’s capability it will follow without missing
steps.

With a servo motor, the inclusion of feedback is necessary, which complicates matters
somewhat. The motor is controlled to minimize the error (the following error) between
demand and actual position (measured with an incremental encoder). Five hundred times
a second, the controller compares desired and actual positions and calculates the correct
demand for the motor. The torque is calculated by a PIVF (Proportional Integral Velocity
Feedback and Velocity Feedforward) algorithm.

Control could be achieved by applying a torque proportional to the error alone, but this is
a rather simplistic approach. Imagine that there is a small error between demanded and
actual position. A proportional controller will simply multiply the error by some constant,
the Proportional gain (GAIN), and apply the resultant to the motor via an amplifier. If the
gain is too high this may cause overshoot, which will result in the motor vibrating back
and forth around the desired position. As the gain is increased, the controller will present
more resistance to positional error, but oscillations will increase in magnitude until the
system becomes completely unstable.

To reduce the onset of instability a damping term is incorporated in the servo loop
algorithm, called Velocity feedback gain (KVEL). This is analogous to putting the motor
output shaft in syrup. Velocity feedback acts to resist rapid movement of the motor and
hence allows the proportional gain to be set higher before vibration sets in.

When the motor is stationary at a set point there may be a small positional error. This is
multiplied by the proportional term to produce an applied torque, but for very small errors
the torque may not be large enough to overcome static friction. Therefore integral action
is also incorporated in the loop calculations, this involves summing the error over time so
that the torque may be gradually increased until the positional error falls to zero. The
speed at which integral action works is controlled by the Integral gain (KINT). Integral
gain is useful to eliminate steady state positional errors, but will result in reduced dynamic
response for the system.

The final term in the control loop is Velocity feedforward (KVELFF). This is useful for
increasing the response for velocity servos.

Two types of servo amplifiers may be used with the controller:

• Current or torque amplifiers use the demand signal to control the current flowing in
the motor armature and hence the torque of the motor.

• Velocity controlled amplifiers use the demand signal as a servo speed reference.

MN1260

7-37/98

For general purpose applications, the torque amplifier is cheaper and simpler to set up, but
the velocity servo gives better control, especially in high performance applications. For
torque amplifiers, velocity feedback must be used to stabilize the system, but this is not
normally required for a velocity servo since it incorporates its own internal velocity
feedback.

A block diagram of the complete control system, showing controller, amplifier, motor and
gearbox is presented below. The servo amplifier may be a simple current amplifier, or
incorporate internal velocity feedback via a tachometer.

This is a four term controller incorporating proportional, velocity feedback, velocity
feedforward and integral gains.

The equation of the loop closure algorithm is as follows:

Demand = GN.e - KV.v + KF.V + KI.∑e

e - following error (quad counts)

v - actual axis velocity (quad counts/sample time)

V - demand axis velocity (quad counts/sample time)

where the terms relate to the following MINT keywords:

Keyword Abbreviation Description

GAIN GN Proportional servo loop gain

KVEL KV Velocity feedback gain

KVELFF KF Velocity feedforward gain

KINT KI Integral feedback

MN1260

7-4 7/98

Tuning the drive involves changing the four servo loop gains, GN, KI, KV and KF to
provide the best performance for your particular motor/encoder combination and load
inertia. In view of the diversity of application, these values all default to zero and should
be set up in the system configuration file. You are advised to read the Getting Started
Guide for details on setting these parameters.

Two other keywords, KINTRANGE and CURRLIMIT, are used to control the DAC
output. KINTRANGE, the integration limit, determines the maximum value of the effect
of integral action, KI.Se. KINTRANGE is specified as a percentage (%) of the full scale
demand output in the range of ±10V. Therefore if KINTRANGE = 25, the maximum
effect of integral action is ±2.5V.

CURRLIMIT, the current limit, so called for its use with current amplifiers, determines
the maximum value of the demand output as a percentage of the full scale demand.
Therefore if CURRLIMIT = 50, the maximum demand output will be ±5V.

The encoder gain (measured in pulses/rev) is one factor that is hardware dependent but has
a direct effect on the overall loop gain. The other four parameters are software controlled
in the range of 0.0-255.0, the resolution of the decimal part is one part in 256 as with
normal MINT variables.

MN1260

7-57/98 MN1260

7.2 Inverter Control
Many inverters have a uni-directional input instead of a bi-directional input. MINT
supports inverters with a uni-directional input by giving a 0-10V reference voltage and a
direction output. The actual direction output pin will depend upon the system used which
can be found from the following lookup table:

System Axis Output pin Output Type

EuroSystem 0 Stepper direction 0 NPN open collector

(including STE) 1 Stepper direction 1 NPN open collector

2 Stepper direction 2 NPN open collector

SmartSystem/1 0 direction axis 0 NPN open collector

SmartSystem/2 0 direction axis 0 NPN open collector

1 direction axis 1 NPN open collector

0 Output bit 7 PNP open collector

EuroServo/3 1 Output bit 6 PNP open collector

2 Output bit 5 PNP open collector

0 Output bit 7 PNP open collector

SmartSystem/3 1 Output bit 6 PNP open collector

2 Output bit 5 PNP open collector

0 Output bit 7 PNP open collector

SmartMove 1 Output bit 6 PNP open collector

2 Output bit 5 PNP open collector

To enable inverter control, write 4 (_inverter) to the CONFIG keyword. For example:

CONFIG = _inverter

Note that for EuroServo/3 and SmartSystem/3, one of the user digital outputs will become
a direction output and cannot be used as a general purpose output.

Since it is not possible to swap the motor demand cables over, as with a bi-directional
system, the active output state of the inverter direction can be changed by writing to the
DIR keyword.

DIR = 0

the output will be low for a requested negative motor direction (e.g. TQ = -10)

DIR = 1

the output will be high for a requested negative motor direction (e.g. TQ = -10)

7-6 7/98

7.3 Positional Resolution and User Units
Positions can be specified to a resolution of ±8,388,608 encoder quadrature counts.
Following error is the instantaneous difference between encoder position and the demand
position from the controller and can be read using the FOLERR keyword. The maximum
permissible following error is controllable via the MFOLERR parameter. This parameter
defaults to a value of 16,000 counts on power up. If the following error is greater than the
maximum following error specified, the system will shut down and report an error
condition. This is represented by an ‘F’ on the LED status display. MFOLERR is used as
a safety feature. Should an axis hit an end stop, the motor will shut down when the
following error (FOLERR) exceeds the maximum following error (MFOLERR).

The SCALE keyword is used to allow you to set up the system so that you can implement
the motion control program in units that are meaningful to the application. In a simple
application, the requirement may be that positions are specified in revs, SPEED’s in
rev/second and accelerations in revs/second. For a 500 line encoder, SCALE should be set
to 2000 to achieve this. The factor of four is because the controller counts each edge of
the two channel Encoder signal, these are called quadrature counts. Hence, the controller
counts 2000 pulses per rev for a 500 line encoder, 4000 for a 1000 line encoder etc.

On power up SCALE defaults to 1, so that all references are made in terms of quadrature
counts. The controller automatically converts all references to positions etc. to quadrature
counts in the low level routines that control the motor. Therefore use of the SCALE
keyword will proportionally reduce the numerical valid range for positions speeds etc.,
without affecting the absolute resolution of the system. This is shown in the following
diagram:

Note that SCALE will only accept integer values.
Non-integer values will be rounded down.

Example of the use of SCALE:

An XY table uses servo motors with 500 line encoders and a 4 mil pitch. With quadrature
encoders this gives 2000 counts per revolution of the motor or 500 counts per millimeter.

MN1260

7-77/98

To scale the positions and speeds to millimeters, the following could be used:

SCALE = 500,500 : REM Scale to mm

SPEED = 30,30 : REM Speed = 30 mm/sec
ACCEL = 500,500 : REM Accel = 500 mm/sec^2

MFOLERR = 10,10 : REM Max following error of 10mm

MOVEA = 100,200 : GO : REM Move to position 100,200mm

MOVER = -10,-10 : GO : REM Move relative -10,-10mm

7.4 The Configuration File
The configuration file is used to store all the defaults appropriate to the particular system.
Whenever the program is RUN, the configuration file is first executed. A list of
parameters that you may wish to set up follows:

• Motor type, i.e. stepper or servo.

• Servo loop gains - to tune the system response. See the Getting Started Guide

• Scale factor - to set the units of measure of the application.

• Maximum following error (MFOLERR) - to set a safe maximum difference between
actual and desired positions.

• Default speeds (SPEED) and accelerations (ACCEL) for the system - to determine the
shape of the trapezoidal velocity profile (RAMP).

These parameters are generally set up only once for an application, but can at any time be
altered in the Program File.

MN1260

7-8 7/98

A typical Configuration file for a three axis system is:

< \MANUAL\3AXIS.CFG

AUTO : REM automatic execution on power up

REM Config file for XYZ motor

RESET[0,1,2] : REM to ensure previous setting cleared

AXES[0,1,2]: : REM 3 axis servo system

CONFIG = _servo;

REM system gains

KVEL = 40;
GAIN = 10.5;

KINT = 0; : REM in program for 0 posn error

KR = 25;

KVELFF = 0;
CURRLIMIT = 100; : REM 100%

REM position/SPEED parameters

SCALE = 2000; : REM units revs (500 line enc)

SPEED = 60; : REM max SPEED 60 revs/sec

ACCEL = 150; : REM max accel 150 revs/sec^2
MFOLERR = 1; : REM 1 rev

IDLE = .25;

HMSPEED = 20;

BACKOFF = 10;

In the above example, the default axis list is 0,1,2 so the semicolon is used to apply all the
parameters to all three axes.

7.5 Data Capture
Many of the controllers provide a DAC output for system tuning using the AUX keyword.
Alternatively, the data capture facility in cTERM for Windows can be used for system
tuning.

There are a number of common problems associated with using the DAC output for
system tuning:

• An oscilloscope must be available for use.

• The signal from which you are trying to tune from can suffer from noise.

• It can be difficult to record results with all but the most expensive oscilloscopes.

MN1260

7-97/98

The new data capture routines do away with these problems by capturing the data to
memory for later analysis. Data, such as axis velocity, axis following error, or position is
stored as MINT array data. This can be easily uploaded to application programs such as
Microsoft Excel or cTERM for Windows for analysis.

Two keywords are associated with data capture:

CAPTURE Determines which axis and what data is captured.
DATATIME Determines the time over which data is captured.

The following graph, produced in Excel, demonstrates the use of data capture:

DIM data(4000) : REM Reverse data points

DATATIME = 4000 : REM Capture 4 seconds of data

CAPTURE = 1 : REM Capture axis velocity

MR = 400 : GO : REM Perform a simple move

MR = -400 : GO

PAUSE IDLE : REM Wait for axis to become idle

FOR data = 1 TO 750 : REM Upload the data as a CSV file for

? data(data) : REM importing into Excel

NEXT

MN1260

7-10 7/98MN1260

Using data capture, one data source and one axis at a time can be captured. The
CAPTURE keyword defines the data source and the destination of the captured data as
given in the table:

Value Description

1 Capture the axis velocity

2 Capture the axis following error

3 Capture the axis position

The axis, on which data you wish to capture, is specified by the axis when calling
CAPTURE. For example:

CAPTURE.2 = 3

will capture the axis position on axis 2. Note that only the data on one axis can be
captured at any one time.

Data capture does not take into account any other arrays already defined on the controller.
Data is captured and stored to the top of memory down until the DATATIME expires. If
other array data is defined, or a large program is residing on memory, this can be over-
written by the data capture values.

DIM xpos(10)
DIM ypos(10)

DIM data(1000)

The data capture will over-write the values stored in xpos, ypos and data. Usually this
does not matter, since the data capture is used for tuning and not to analyze motor
performance in the final application.

MN1260 8-17/98

8. Program and Motion Errors
Errors can be broken down into the following groups:

1. System errors

System errors include:

• Motion in Progress

• Out of Range

• Invalid Mode

• Servo Off

2. Motion errors

Motion errors include:

• Limit error

• Following error exceeded.

• External error

3. Programming errors

Run-time language errors such as Syntax Error.

MINT is able to handle a number of error conditions through the use of the keywords
ERROR, ERRAXIS and ERR. When an error occurs, the error handler is called. This is
defined by placing a subroutine, #ONERROR, within the program. Only System Errors
and Motion Errors can be trapped within an ONERROR routine.

The ERR keyword is used to determine the nature of the error and ERRAXIS the axis on
which the error occurred. ERR codes are as follows:

MN12608-2 7/98

System Error: These errors are
associated with the motion keywords

Out of range 0

reserved 1

reserved 2

Invalid axis setup 3

Invalid axis 4

Motion in progress 5

Servo off 6

reserved 7

Keyword not defined 8

reserved 9

Motion errors: These are async errors
that result in motion shutdown. The
error can be further investigated using
the ERROR keyword.

reserved 10

Following Error 11

Limit Error 12

Card Aborted 13

External Error 14

Digital Output Fault 15

Using ERR codes, an ONERROR may look like the following:

#ONERROR

REM System Error. Re-run the system
IF ERR < 10 DO

PRINT “System Error”

PAUSE INKEY = ‘ ‘

RUN
ENDIF

MN1260 8-37/98

REM Motion error. Determine the nature of the error by reading
REM the ERROR keyword.

IF ERR > 10 DO

IF ERROR.0 = _limit OR ERROR.1 = _limit DO

DISLIMIT[0,1]
SERVOFF[0,1]

PAUSE !LIMIT.0 AND !LIMIT.1

SERVOC[0,1]

ENLIMIT[0,1]
ENDIF

ENDIF

Note that once set, ERR is not cleared down and retains a value equivalent to
the last reported error.

8.1 Program Errors
Programming errors are usually silly mistakes like forgetting to put a bracket at the end of
an expression, or forgetting a NEXT at the end of a FOR loop. Programming errors result
in the program terminating with an error message and the LED status display showing an
‘E’. If no terminal was connected to the system when the error occurred, the error can be
read by typing LASTERR at the command line. For example:

LASTERR

might return:

ERROR: Program: Syntax error at line 123

or:

ERROR: Program: Out of range at line 10 on axis 2

Using either the onboard line editor or an off-line editor, the error should be corrected and
the program re-executed using the RUN command. A list of all error messages is given in
section 11.

MN12608-4 7/98

8.2 Asynchronous Errors
Motion errors can be any of the following:

• End of travel limit hit

• Following error

• External (error input) error

• User abort

If any of the above are generated, the ERROR keyword will be assigned one of the
following values:

Code Constant Meaning

0 No error condition

1 _abort Software abort. A fault has been encountered within
the program and program execution has terminated.
For example a Syntax Error. Alternatively, ABORT
has been issued within the program.

2 _maxfe The maximum following error has been executed.
The maximum following error can be set using the
MFOLERR keyword.

3 _limit Limit switch open.

11 _external External (error input) error. This is an input to the
controller to signal an external error condition.
The ERRORIN keyword determines the active state
of the input.

13 n/a Digital output error (SmartMove only). One or
more of the digital outputs has the following error:

• Over current

• Short circuit

• Over temperature

The axis on which the error is detected will generate a software abort to all other axes and
consequently the system will be automatically shut down. The only way to recover
without disconnecting power is to issue the RESET or CANCEL command to all axes in
the system. This may be achieved in software without the program terminating by using
the ONERROR routine (section 5.3.1.1). If no ONERROR routine is defined, MINT will
terminate program execution and issue an error message. For example:

ERROR: Program: Following Error at line 20 on axis 1

MN1260 8-57/98

The external error is triggered through an input on the controller. The state of this input
can be software configured using the ERRORIN keyword which accepts the following
values:

Value Function

0 Error input active low.

1 Error input active high

2 Error input disabled

ERRORIN by default is 2 and must therefore be configured to either 0 or 1 if used.

8.2.1 Error Handling using ONERROR

Whenever there is a motion error, MINT cannot continue to process motion commands.
Normally this causes the interpreter to abort execution and return to command line
prompt.

In many applications, the controller must be able to recover from an error without the
operator powering up the system again. This facility is provided by the ONERROR key-
word. When a motion error occurs, MINT looks for a subroutine called #ONERROR
(note the use of the # as in a normal subroutine). If such a subroutine exists, MINT
executes it.

ONERROR subroutine may be used to perform a number of actions:

• Test the error keyword to identify the type of error that occurred.

• RESET the controller and re-datum the equipment, then re-run the program from start
using RUN.

• CANCEL the current move and resume program execution from the point at which
the error occurred using RETURN.

• Terminate program execution using END.

• Disable the limits, using DISLIMIT, allowing powered movement while beyond the
limit switches.

MN12608-6 7/98

Example:

#ONERROR

REM Output error on SmartMove
IF ERR = 15 DO

PRINT “Outputs in error. Check circuit and reset”

PAUSE 0

ENDIF

REM Check for motion errors

IF ERR >= 10 AND ERR < 15 DO

REM max following error exceeded, cancel current move then resume ..

REM ..program from where it stopped
IF ERROR.0 = _maxfe THEN CANCEL : RETURN

REM limit switch closed, call operator, wait for the operator to ..

REM .. manually move off the limit switch, RESET controller then ..
REM .. re-run program from start

IF ERROR.0 = _limit DO

PRINT “Limit error - please re-position table”

REM wait for limit switches on axes 0 and 1 to open
PAUSE LIMIT.0 = 0 & LIMIT.1 = 0 : REM Could use LIMIT[0,1]

RESET

RUN

ENDIF
ENDIF

REM Misc error

PRINT “Error “, ERR, “reported”

PAUSE 0
END

The difference between RESET and CANCEL is that RESET will set the axis position to
zero as well as clearing the error. CANCEL simply clears the error condition and the
current motion in progress, but does not set the axis positions to zero. This allows the
ONERROR routine to recover from the error without losing the current position.

The keyword DISLIMIT may be used to disable limit switches after the machine has hit
the end-stops so that the operator can drive the machine back into a safe operating zone.
DISLIMIT will automatically issue a CANCEL command to clear the error. Limit
switches can be re-enabled by the keyword ENLIMIT.

MN1260 8-77/98

The motion error must be cleared before a motion variable can be written to.
Failure to do so will result in program termination.

8.3 Front Panel Status Display
The status display is a single character display indicating axis status and error conditions.
During normal operation it will display the current move in progress on axis 0 ,1 or 2,
depending on the keyword LED.

LED = 0

sets the LED display to show the current status of axis 0. Similarly:

LED = 1

sets the display for axis 1. The bottom left dot on the LED is illuminated when axis 1
status is displayed.

If an error occurs, the status of all axes will be displayed at approximately one second
intervals.

8.3.1 Error Conditions

Display Meaning

Ø External (error input) error. This is an input to the controller
to signal an external error condition. The ERRORIN keyword
determines the active state of the input.

E Software abort. A fault has been encountered within the
program and program execution has terminated. For example
a Syntax Error. Alternatively, ABORT has been issued within
the program.

F The maximum following error has been executed. The
maximum following error can be set using the MFOLERR
keyword.

L Limit switch open

ß Digital output error (SmartMove only). One or more of the
digital outputs has the following error:

• Over current

• Short circuit

• Over temperature

The actual error condition can be read using the ERROR keyword.

MN12608-8 7/98

8 It should be noted that the dot does not flash on a single axis controller when in an error condition.

8.3.1.1 Output Errors On SmartMove

SmartMove is able to detect errors on the digital output if one of the following conditions
arises:

• Over current on the outputs

• Over temperature on the outputs

• Short circuit on the outputs

If an error occurs, the output will be shut down and the 7 segment display will show a
small (with flashing dot. All axes will be shut down with an error condition (ERROR =
13) and the #ONERROR routine will be called with an ERR value of 15.

The fault should be investigated and cleared. RESET can be used to clear the fault
condition on the output. If the fault has not been cleared, the status display will continue
to show an ß.

8.3.2 Motion Status Conditions

Display Meaning Keyword

– Servo power off SERVOFF

8 Servo powered up & idle

C Circular Interpolation CIRCLEA/CIRCLER

Æ Encoder following mode FOLLOW

H Homing HOME

J Jogging (Velocity) move JOG

o Offset mode OFFSET

P Linear Positional move MOVEA/MOVER,
VECTORA/VECTORR

q Torque Control Mode TORQUE

S Stop input asserted

U Pulse following mode PULSE

F Flying shear (note that if the dot is flashing8,
this indicates a following error FLY

C Cam profiling CAM, CAMA

g High precision gear ration following GEARN

The current mode of motion can be read using the MODE keyword. Section 6.10 contains
more information on MODE.

MN1260 9-17/98

9. MINT Line Editor and Program Buffers
An application program consists of 2 files, the configuration file used for storing program
defaults and set-up parameters, and the program file for storing the application program.
The configuration file would usually be set once for a particular system, whereas the
program file may change regularly in some applications (for instance: component insertion
in printed circuit boards). To switch between the two files for editing, the CON and
PROG keywords are used.

28,000 characters (bytes) of RAM space is available
for program storage. The size of the configuration
file is fixed at 1000 bytes but the program size is
limited only by available memory. The controller
memory is split as shown.

Note the area of memory labeled compiled code.
MINT programs are not interpreted in the true sense
of the word but are compiled into an intermediate
code for faster execution. When a program is first
executed either by the RUN command or the AUTO
command, the source code iirst compiled then
executed. Depending upon the length of the
application, this can take a couple of seconds. The
compiled code is placed at the end of the program
code and in most cases is about 50% the size of the
program code. The FREE keyword can be used to
determine the amount of available free memory. If
memory is a problem, the program code can be
squashed using the SQUASH facility in cTERM for
Windows.

Program and configuration files can be created using the on-board line editor or
alternatively can be created off-line using a PC editor (cTERM) and then downloading the
source code. The maximum line length must be restricted to 75 characters when using the
onboard editor. A restriction of 127 characters per line apply when using an offline editor.

Using the on-board editor, the editor commands are available from the user ‘P>’ or ‘C>’
prompt. A summary of the commands are:

MN12609-2 7/98

Command Function

CON Select configuration file for editing

DEL Delete lines

EDIT Edit lines

FREE Return the amount of free memory

INS Insert a line or lines

LIST List the program

NEW Clear the buffer

PROG Select program file for editing

The editor commands are discussed in detail in the following text.

Editor commands cannot be used within a MINT program
and if so will generate an error.

9.1 Memory Expansion
All the controllers support a memory expansion option which supports a 64K SRAM card.
Both SmartMove and SystemSystem/3 have the memory card interface build in.
SmartMove also supports 128K memory cards.

The memory card is supported within the standard versions of MINT and gives the
following features:

• Array storage on the memory card by use of the OFFLINE keyword.

• Offline program and configuration storage.

A memory expansion option is available (denoted by /MX in the version). In this case,
the program and configuration files are loaded into the memory card. When executed, the
code is compiled from the memory card and the compiled code placed into internal RAM.
This is unlike the standard memory card support where the program and configuration
files are automatically loaded from the memory card into internal memory before
execution.

MN1260 9-37/98

The following table compares the features of the memory expansion against standard
memory card support:

Feature Standard /M Expanded /MX

Max number of variables 50 100

Max number of sub-routines 40 80

Max program size (This depends upon 16K approx 60K approx
the available space for the compiled code). (64K RAM card)

OFFLINE array data 3 3

Support for onboard MINT line editor 3 7

See section 4.5.1 for further details on the memory card functionality.

MN12609-4 7/98

9.2 Password Protection
The program and configuration file can be password protected by use of the PROTECT
keyword. The keyword is placed at the top of the program file following by the password.
For example:

PROTECT abc

REM Program #1

GOSUB init

GOSUB main
#init

...

If any of the editor commands are used such as LIST, LOAD or SAVE, MINT will display
the following:

Password?

requesting you to enter the password. The password when entered is displayed as *’s. If
the password is rejected, nothing happens, if the password is accepted the editor command
will be carried out.

See the PROTECT keyword in section 10 for further details.

9.3 Editor Commands

CON

Purpose:

Select the configuration file for editing.

Format:

CON
Selects the configuration file for editing. The command line prompt will change to ‘C>’
and the number of bytes used by the configuration file will be displayed:

Card #0

Configuration: 249 Bytes Free (750 Used) 21 lines

Variables: #16 Arrays: #0

See also:

FREE, NEW, PROG

MN1260 9-57/98

DEL

Format:

DEL <line number> {, <line number>}

Deletes a single line, or a block of lines between two line numbers, from the source code.
Once a line is deleted, it cannot be recovered.

Example:

DEL 10,20
delete lines 10 to 20 inclusive.

See also:

EDIT, INS

EDIT

Format:

EDIT {<line number>}

If no line number is specified, the EDIT keyword appends lines of text to the end of the
program. The prompt will change to the line number and ‘>’ character. To terminate
editing, press Return on a blank line.

If a line number is specified, the line to be edited will be displayed. For instance, to edit
line 4 of a program, type:

EDIT 4

The line editor allows you to edit lines using the cursor keys on a PC. With cTERM the
cursor keys are used to move the cursor left and right over the line. The text can be
overwritten or blank spaces inserted into the line using the Ins key. The backspace key
will delete characters to the left of the cursor. All characters to the right of the cursor are
moved left one character space. The Home key will move the cursor to the beginning of
the line and the End key will move the cursor to the end of the line.

The editor keys are duplicated on the control keys:

MN12609-6 7/98

PC Key Control key Meaning

Right Arrow Ctrl-P Move right one character

Left Arrow Ctrl-O Move left one character

Ins Ctrl-I Insert a blank character

Home Ctrl-K Move to beginning of line

End Ctrl-L Move to end of line

Up Arrow Ctrl-R Recall last command

These control keys can be used for editing lines where cTERM is not used.

Once you have finished editing a line, press return to get back to the command prompt.

See also:

DEL, INS

FREE

Format:

FREE
Displays the amount of free memory available after program compilation and array data
has been assigned. Typing PROG at the command line displays the amount of free
memory available for source code without taking into account the length of the compiled
code.

Example:

P>prog

Card #0

Program: 25288 Bytes Free (1632 Used) 69 lines
Variables: #6 Arrays: #20

P>free

24779 bytes free
P>

If the compiled code does not fit into the available memory, free will return an Out of
Memory error.

Using FREE may destroy array data held in memory
if there is insufficient memory space.

MN1260 9-77/98

INS

Format:

INS <line number>

A line is inserted above the line number specified and the line numbers are adjusted
accordingly. For example:

INS 4
will insert the new line between line 3 and 4. Further lines will be inserted as long as you
continue to type. To terminate editing press Return/Enter on an empty line.

See also:

DEL, EDIT

LIST

Format:

LIST {<line number> {,<line number>}}

Lists a single line, or a block of lines between two line numbers. By entering LIST with
no parameters, the entire program will be listed to the screen, this can be aborted by
pressing Ctrl-E.

Example:

LIST 10,30

will list program lines 10 to 30 inclusive.

NEW

Format:

NEW

Clears the current buffer of all text. Once NEW has been entered, the source code cannot
be retrieved.

See also:

CON, PROG

MN12609-8 7/98

PROG

Format:

PROG

Selects the program file for editing. The command line prompt will change to ‘P>’ and
the number of bytes used by the program file will be displayed:

Card #0
Program: 23179 Bytes Free (3821 Used) 263 lines

Variables: #16 Arrays: #0

See also:

CON, FREE, NEW

MN1260 10-17/98

10. MINT Keywords

$ (Select Controller)

Purpose:

To select controllers over a multi-drop link

Format:

$<card>

$ is used to select a controller over the multi-drop link giving access to the full
functionality of the controller. $ must be followed by the card address which is 0 to 9 and
A to F (for cards 10 to 15), where the card address is defined by the 4 way dip switches
on the controller. Once a card is selected, you have full access to the command line etc.
allowing programs and data to be uploaded and downloaded. If protected communications
is running (see COMMSON), the comms protocol must be aborted first before Ctrl-E can
be used.

Example:

$1

will select card 1

$B

will select card 11 (note the use of capital B, lower case b will not change the card
address).

$ is a form of immediate command only and therefore
cannot be used within a program

See also:

CARD

MN126010-2 7/98

: (Command Separator)

Purpose:

To separate multiple commands on a line.

Format:

:

A colon separates multiple statement on a single line of code.

Examples:

gain = 10 : PRINT gain

IF IN1 THEN OUT1 = 1 : SPEED = 10

(Subroutine Label)

Purpose:

To define a label for use with GOSUB or GOTO.

Format:

subroutine_name

A subroutine label is prefixed with a hash ‘#’ where each label can be up to 10 characters
in length. If two labels have the same name, an error is generated.

Example:

A subroutine that performs ten incremental moves:

#move_10

FOR i = 0 to 10

MOVER = 1 : GO

NEXT
RETURN

The subroutine is called with:

GOSUB move_10

Note that the hash is not used in the GOSUB statement.

See also:

#FASTPOS, #IN0..#IN7, #ONERROR, #STOP, GOSUB, GOTO, RETURN

10-37/98

#FASTPOS

Purpose:

To define an interrupt routine that is called in response to a fast interrupt.

Format:

#FASTPOS
...
RETURN

Defines an interrupt routine on the fast interrupt input pin. The interrupt routine is called
on a rising edge (a transition of 0 to 1 as seen by the controller – inactive to active state)
of the input. The fast interrupt will also latch the instantaneous axis positions and store
the values to the FASTPOS keyword. The routine can be disabled using the DINT
keyword and re-enabled using EINT.

In addition to latching the axis positions, the interrupt will also latch the encoder values to
the FASTENC keyword.

See the section 5.3.2.1 for more details.

See also:
DINT, EINT, FASTENC, FASTPOS, #IN0..#IN7, RETURN

#IN0 .. #IN7 (User Interrupts)

Purpose:

To define an interrupt routine on a digital input.

Format:

#INx

Defines an interrupt routine on a digital input (IN0 to IN7). The interrupt routine is called
on a falling edge (a transition of 1 to 0 as seen by the controller – active to inactive state)
of the input. See the section 5.3.3 for more details.

Example:

#IN3
STOP.0
PAUSE IDLE.0

RETURN

will stop any motion on axis 0 if a falling edge is seen on interrupt 3.

See also:
IN0..IN7, RETURN

MN1260

10-4 7/98MN1260

#ONERROR

Purpose:

To define an error subroutine that is called in response to a motion error.

Format:

#ONERROR

Whenever there is a system error, MINT looks for a subroutine called #ONERROR (note
the use of the # as in a normal subroutine). If such a subroutine exists, MINT executes it.
System errors can be either positional (following errors) or limit errors as shown in the
table:

Error Number Constant Error

1 _abort Software Abort

2 _maxfe Following Error

3 _limit Limit Error

11 _external External

13 Digital output(s) in error.
SmartMove only

Limits can be disabled using the DISLIMIT keyword so that powered movement can be
undertaken while beyond the limits. This should only be undertaken while under operator
supervision. ENLIMIT or RESET will enable the limits.

This routine is used to recover from the error and put the controller back into a desired
state.

Example:

#ONERROR

RESET[0,1,2]

RUN

This example program fragment resets the controller and re-runs the program in the event
of a motion error. Since ONERROR is a subroutine, it could be terminated by a RETURN
statement. In this event, the program would resume execution after the line where the
error occurred.

See sections 5.3.1.1 and 8 for further details.

See also:

CANCEL, DISLIMIT, ENLIMIT, ERROR, LIMIT, RETURN, RUN

10-57/98

#STOP

Purpose:

To define a STOP subroutine that is called in response to a stop input.

Format:

#STOP

Subroutine called in response to a rising edge (a transition of 0 to 1 as seen by the
controller – inactive to active state) on the stop input. This can be used to halt program
execution and set some inputs etc. on a stop input.

Example:

#STOP

PAUSE !STOPSW : REM Wait for stop input

RETURN : REM Resume execution

Should the STOP subroutine terminate before the stop input is de-activated, the STOP
subroutine will not be called until another rising edge is seen.

See section 5.3 for more details on MINT interrupt routines.

See also:

RETURN, STOPMODE, STOPSW

ABORT/AB

Purpose:

To abort motion on all axes.

Format:

ABORT

MN1260

10-6 7/98MN1260

Abbr. Read Write Command Multi-Axis Scaled Default Range

AB ❑ – –

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Abort motion - crash stop all axes - does not accept an axis parameter since it causes
automatic shut-down on all axes. The ERROR keyword will return 1 and the LED display
will show an E. If the ONERROR routine is defined then this will be called.

ABORT

will abort motion on all axes.

Alternatively, the enable output can be turned off using the ENABLE keyword which does
not result in an error.

See also:

CANCEL, ENABLE, ERROR, #ONERROR, RESET, STOP

ABS

Purpose:

To return the absolute value of an expression.

Format:

v = ABS(<expression>)

Calculates the absolute value of the expression.

Example:

PRINT ABS(7 * -5)
will print 35 to the operator terminal.

Some keywords such as FOLERR and VEL return a signed number. To check that the
velocity is greater than a certain value regardless of motor direction the following would
be used:

IF ABS(VEL) > 20 THEN OUT4 = 1

10-77/98 MN1260

this will set output bit 4 if the velocity is greater than 20 or less than -20.

See also:

INT

ACCEL/AC

Purpose:

To define the acceleration of an axis.

Format:

ACCEL[axes] = <expression> {,<expression> ...}

v = ACCEL[axis]

Abbr. Read Write Command Multi-Axis Scaled Default Range

AC ❑ ❑ ❑ ❑ 300,000 1000.0 to
3000 (step) 8388607.0

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

ACCEL sets the acceleration of the velocity profile in counts/s2. The acceleration can be
changed at any time during a move.

In an interpolated move the acceleration will determine the acceleration on the vector of
movement. In order for correct motion, all axes performing interpolation must have the
same acceleration specified before the move is executed.

The DECEL keyword sets the deceleration value. The ACCEL keyword will override the
DECEL keyword unless bit 0 of AXISCON is set.

The ACCEL/DECEL values determine the acceleration/deceleration rate when the STOP
input is opened. This will allow the system to come safely to rest.

10-8 7/98

Example:

SCALE = 2000;

ACCEL = 500;
will set the acceleration rate, for the default axes, to 500 * 2000 counts / sec2.

During positional moves, the
acceleration and deceleration can be
smoothed out by using the RAMP
keyword. The effect of RAMP on the
acceleration and deceleration ramps is
shown in the diagram:

To set an acceleration rate higher than
8388607 counts/sec2, use the
ACCELTIME keyword. This defines
the time taken to reach the velocity set
by the SPEED keyword.

Note: Due to the resolution and representation of numbers in MINT it is not
always possible to store the exact value of ACCEL. When writing to ACCEL,

the value is converted from units per second to counts per servo loop.
This can lead to rounding errors.

See also:

ACCELTIME, AXISCON, CIRCLEA, CIRCLER, DECEL, JOG, MOVEA, MOVER,
RAMP, SCALE, SPEED, STOP, VECTORA, VECTORR

ACCELTIME/AT

Purpose:

To set an acceleration for position moves based on the time to reach a specified speed.

Format:

ACCELTIME[axes] = <expr> {,<expr> ...}

MN1260

10-97/98 MN1260

Abbr. Read Write Command Multi-Axis Scaled Default Range

AT ❑ ❑ ❑ – 2 to
32000

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

The ACCELTIME keyword is used to define the time, in milli-seconds, to reach a velocity
defined by SPEED assuming a trapezoidal ramp (RAMP = 0).

Example:

SPEED = 20
ACCELTIME = 50

the axis will accelerate to a speed of 20
units/sec in 50 milli-seconds.

The acceleration, as defined by
ACCELTIME, is based on the current
SPEED when ACCELTIME was set.
Therefore, if the SPEED is changed,
the actual acceleration will remain
constant as shown in the diagram.
ACCELTIME is based on a trapezoidal
ramp (RAMP = 0). The acceleration is also not defined by an ACCELTIME and JOG
speed, since ACCELTIME is based on the current SPEED setting.

ACCELTIME can be used to define higher accelerations than with the ACCEL keyword.
It should be noted that if an ACCELTIME defines an acceleration higher than the
maximum range allowed by ACCEL, reading ACCEL will return meaningless results.

ACCELTIME will also set the deceleration value unless bit 0 of the AXISCON keyword is
set.

See also:

ACCEL, AXISCON, CIRCLEA, CIRCLER, DECEL, JOG, MOVEA, MOVER,
RAMP, SCALE, SPEED, STOP, VECTORA, VECTORR

10-10 7/98MN1260

9Available only on 3 axis servo controller

ANALOGUE1/A1
ANALOGUE2/A2

ANALOGUE3/A3*

Purpose:

To read the 10 bit analog inputs.

Format:
v = ANALOGUE1
V = ANALOGUE2
V = ANALOGUE3

Abbr. Read Write Command Multi-Axis Scaled Default Range

A1 ❑ – 0 to
A2 1023
A39

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Returns the value of the specified analog input. Each input has a ±10V or 0 to 5V range
which is jumper selectable, with 10 bit conversion resolution. See the hardware
installation manual for further details.

The analog ports can be used to provide XY control through a joystick (see section
6.12.1).

Example:

JOG = ANALOGUE1-512,ANALOGUE2-512

this will jog both X and Y at a speed specified by the analog inputs. ANALOGUE1-512
will return a value of -512 to 512.

ANALOGUE3 is only available on the 3 axis servo controller.

See also:

DAC

10-117/98 MN1260

AND/&

Purpose:

To perform a logical or bitwise AND.

Format:

v = <expr> AND <expr>

Abbreviation:

&
Logical AND used in conditional statements and loops, for example:

IF key = ‘A’ AND userEnable THEN GOSUB setup

“GOSUB setup” is only executed if both key = ‘A’ and userEnable are true.

Logical AND is based on the following truth table:

<expr1> <expr2> <expr1> AND <expr2>

0 0 0

0 1 0

1 0 0

1 1 1

AND is a bitwise logical operator and can be used to mask bits on outputs for example:

OUT = OUT & 15

will clear bits 4 to 7 leaving bits 0 to 3 intact.

IF IN & 010101010 THEN OUT1 = 1
will set output bit 1 if any of the even input bits are active.

See also:

NOT, OR

10-12 7/98

AUTO

Purpose:

To automatically execute a program on power up.

Format:

AUTO

AUTO causes the program within the controllers non-volatile RAM to be executed
automatically on power-up. AUTO must be the first command in the configuration file. If
AUTO is found anywhere else in either files, it will be ignored. Once this is set the only
way to regain user control is by sending 05H down the master serial port (press Ctrl-E at
the keyboard). Ctrl-E will cause the interpreter to return to immediate mode at any time
during code execution. If MINT Host Computer Communications (COMMSON) is
enabled, a special data packet must be sent to the controller to abort the comms protocol
before Ctrl-E is interpreted.

AUTO

REM Set system defaults

RESET[0,1,2]

KVEL = 10;
GAIN = 2;

KINT = .1;

SCALE = 1000

...

If protected datapackets are sent the controller before it has powered up,
there is the danger that Ctrl-E within a data packet could result in the

program termination. In order to minimize this risk, COMMSON should
be placed immediately after AUTO.

See also:

COMMSON, RUN

MN1260

10-137/98 MN1260

AUX/AX

Purpose:

To enable system commissioning by writing the velocity or following error to a DAC
output.

Format:

AUX = <expr>

v = AUX

Abbr. Read Write Command Multi-Axis Scaled Default Range

AX ❑ ❑ ❑ – –1 to 5

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑

The AUX keyword enables the axis velocity or following to be written to another DAC
output on the controller for system commissioning. If a 3 axis servo controller is used, the
velocity or following error is written to the 4th DAC output. The AUX keyword accepts
one of the following values:

Value Action

-1 Disable function

0 Write velocity of axis 0 to DAC output 1 or 4th DAC

1 Write velocity of axis 1 to DAC output 0 or 4th DAC

2 Write velocity of axis 2 to DAC output 0 or 4th DAC

3 Write following error of axis 0 to DAC output 1 or 4th DAC

4 Write following error of axis 1 to DAC output 0 or 4th DAC

5 Write following error of axis 2 to DAC output 0 or 4th DAC

10-14 7/98

Using an oscilloscope on the DAC output, the axis can be tuned for the best system
response. Writing the velocity to the DAC output will show the velocity profile of any
positional move highlighting any overshoot or instability. In order to monitor the velocity
profile, short positional moves with high accelerations and speeds are advised. The
velocity is shown as counts per servo loop.

Writing to the AUX keyword on axis 2
will direct the following error and
velocity of axes 0 and 1 to the third
axis option board. For example:

AUX.2 = 1

will direct the velocity of axis 1 to the
DAC output on the third axis option
board. If the AXES keyword is used to
default to axis 2 (AXES[2]) the
following must be used to direct the
output to either axis 0 or axis 1:

AUX.0 = 3

will direct the following error of axis 0
to the DAC output on axis 1.

The following error can be reduced
considerably by applying some velocity
feedforward gain, KVELFF (see the
Getting Started Guide for further
details). This can be monitored, using
an oscilloscope, by writing the
following error out to the DAC output (AUX = 3 to 5).

Note that given a 12 bit DAC, the maximum following error and velocity that can be
shown is +/- 2048 counts.

Remember to disable the AUX keyword (AUX = -1) before
connecting the other motor.

For SmartMove, SmartSystem/3 and EuroServo, the following error
and velocity are directed to the 4th analog output.

See also:

AUXDAC, CAPTURE, GAIN, FOLERR, KINT, KVEL, KVELFF, VEL

MN1260

10-157/98 MN1260

AUXDAC/AD

Purpose:

To write an analog value to the 4th DAC output on SmartMove, SmartSystem/3 or
EuroServo/3.

Format:

AUXDAC = <expr>

v = AUXDAC

Abbr. Read Write Command Multi-Axis Scaled Default Range

AD ❑ ❑ – –1 to 5

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SMM/1 SMM/2 SMM/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑

The AUXDAC keyword is used to write directly to the 4th 12 bit DAC output. AUXDAC
accepts a value of -2047 (-10V) to 2047 (+10V) where an increment of 1 represents
4.9mV.

Example:

AUXDAC = 1024

will give a 5V output on the DAC.

If the AUX keyword has been used, this must be assigned a value of -1 to disable this
function since it will overwrite any value written to the 4th DAC output by the AUXDAC
keyword.

Reading AUXDAC will return the value written to the DAC output.

See also:

AUX, AUXDAC, DAC

10-16 7/98MN1260

AXES

Purpose:

To define a default axis string.

Format:

AXES[axis list]

Abbr. Read Write Command Multi-Axis Scaled Default Range

– ❑ ❑ – –

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Defines the default axis string for commands and writable motion variables.

Example:

AXES[1,2]

MOVEA = 20,30 : GO

Executes absolute move on axes 1 and 2.

This is the same as:

MOVEA[1,2] = 20,30 : GO[1,2]

Once the default axis string is defined, the first example will be quicker to execute than
the second, as well as taking up less program space.

Typing AXES at the command line will display the current axis string.

10-177/98 MN1260

10Abbreviation supported by MINT/3.28 only

AXISCON

Purpose:

To set-up an axis configuration

Format:

AXISCON[axes] = <expr> {,<expr> ...}

v = AXISCON[axis]

Abbr. Read Write Command Multi-Axis Scaled Default Range

AO10 ❑ ❑ ❑ ❑ 0 to 255

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SMM/1 SMM/2 SMM/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

AXISCON is used to switch in and out various axis attributes such as DECEL and the 3
channel encoder interface board. AXISCON accepts a bit mask, a setting of 0 on the bit
turns off the attribute and a setting of 1 turns it on. The following bits are defined:

Bit Description

0 Turn on the DECEL keyword. A setting of 0 will allow the ACCEL value
to over-write the DECEL value. This allows backwards compatibility of
MINT programs before the DECEL keyword was introduced.

1 Turn on the 3 channel encoder interface. This allows the use of the
XENCODER keyword. Turning it off (default) provides MINT with more
execution time.

2 Turn off following error detection for the axis. If the maximum following
error is exceeded (MFOLERR), no error will be given and the following
error value will be set to MFOLERR.

3 When set, MOVER returns the target position rather than final position.

4..7 Reserved for future use.

10-18 7/98MN1260

Example:

AXISCON.1 = 011

Turns on the DECEL keyword and XENCODER for axis 1.

See also:

ACCEL, DECEL, FOLLOWAXIS, MFOLERR, XENCODER

BACKOFF/BA

Purpose:

To set the home backoff speed factor.

Format:

BACKOFF[axes] = <expression> {,<expression> ...}

v = BACKOFF[axis]

Abbr. Read Write Command Multi-Axis Scaled Default Range

BA ❑ ❑ ❑ 10 1 to 100

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

BACKOFF determines the backoff speed from a home switch. The home sequence is
explained in section 6.4. The axis will reverse from the home switch at:

HMSPEED/BACKOFF

BACKOFF by default is set to 10. Reducing this value will decrease the time taken to
perform the homing sequence, especially when a slow HMSPEED is used.

10-197/98 MN1260

Example:

BACKOFF = 2;

HMSPEED = 2000;
HM = 0;

PAUSE IDLE[0,1,2]

will backoff from the home switch at a speed of 1000 counts/sec.

See also:

HMPSEED, HOME

BAUD

Purpose:

To set the serial port baud rate.

Format:

BAUD = <expr>

Abbr. Read Write Command Multi-Axis Scaled Default Range

– ❑ 9600 300 to 19200

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SMM/1 SMM/2 SMM/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

The BAUD keyword is used to set the controllers serial port data rate. By default, the
controller will power up with a baud rate setting of 9600. This can be overwritten by
placing BAUD in the configuration file. This should be place near the beginning before
any terminal I/O commands. For example:

AUTO
BAUD = 1200 : REM 1200 bits per second
AXES[0,1,2]
RESET
SCALE = 100,200,300
...

10-20 7/98

Note that MINT will accept any value of BAUD between the range of 300 and 19,200 and
is not restricted to common baud rates such as 1200, 2400, 4800 etc.

BEEP

Purpose:

To issue a beep at the user terminal.

Format:

BEEP
Issues a beep at the user terminal. This is useful to attract the attention of an operator. If
a keypad and display is connected, the keypad buzzer will sound.

Example:

#ONERROR

CLS

? “*** ERROR ***”

REM Beep to attract attention until a key press

REPEAT

BEEP : WAIT = 200

UNTIL INKEY
RESET[0,1,2]

RUN

See also:

BEEPOFF, BEEPON, CHR

MN1260

10-217/98

BEEPOFF

Purpose:

To disable the keypad buzzer during INPUT and INKEY. This is the default mode on
power up.

Format:

BEEPOFF

Disable the keypad buzzer during INPUT and INKEY. For example:

BEEPOFF

INPUT a USING 5,2

No beep will be emitted when a key is pressed unlike:

BEEPON

INPUT a USING 5,2

See also:

BEEP, BEEPON, INKEY, INPUT

BEEPON

Purpose:

To enable the keypad buzzer during INPUT and INKEY.

Format:

BEEPON

To provide a form of tactile feedback from the keypad, BEEPON will cause INPUT and
INKEY to issue a beep when a key is pressed. Note that on power up, the controller will
default to BEEPOFF.

Example:

BEEPON

INPUT a USING 5,2

BEEPOFF

A beep will be emitted from the keypad buzzer every time a key is pressed.

See also:

BEEP, BEEPOFF, INKEY, INPUT

MN1260

10-22 7/98

BINARY

Purpose:

To display an 8 bit binary number.

Format:

BINARY argument list

The BINARY keyword has the same syntax as PRINT except numbers are printed in
binary. All numbers are stripped of their fractional part.

Example:

BINARY “12 in binary is : “,12
will print:

12 in binary is : 00001100

Numbers will be printed up to 8 bits in length and are prefixed with zeroes where
necessary. BINARY is useful for reading the digital inputs:

BINARY IN

See also:

BOL, LOCATE, PRINT

BOL

Purpose:

To move the cursor to the beginning of the line.

Format:

BOL

Return the cursor to the Beginning Of Line without feeding a new line. Useful for
repeatedly printing a position (POS) or velocity (VEL) at a terminal on a single line.

Example:

LOOP : ? POS[0]; : BOL : ENDL

Note the use of the semicolon after PRINT to suppress line feeding and to clear any
characters to the next tab stop.

See also:

LINE, LOCATE, PRINT

MN1260

10-237/98 MN1260

BOOSTOFF/BF

Purpose:

To turn the stepper boost output off.

Format:

BOOSTOFF[axes]

Abbr. Read Write Command Multi-Axis Scaled Default Range

BF ❑ ❑ – –

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑

Some stepper drives have a boost input to increase the power to the stepper motor, issuing
BOOSTOFF turns the stepper boost output off. If the boost is not used, the output can be
used as a general output. This will give the you up to 3 extra outputs.

Example:

BOOSTOFF[1,2]

will turn boost outputs 1 and 2 off.

On power up, the default is BOOSTOFF.

See also:

BOOSTON, OUT

10-24 7/98MN1260

BOOSTON/BO

Purpose:

To turn the stepper boost output on.

Format:

BOOSTON[axes]

Abbr. Read Write Command Multi-Axis Scaled Default Range

BO ❑ ❑ – –

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑

Some stepper drives have a boost input to increase the power to the stepper motor, issuing
BOOSTON turns the stepper boost output on. If the boost is not used, the output can be
used as a general output. This will give the you up to 3 extra outputs.

Example:

BOOSTON[0,1]

will turn boost outputs 0 and 1 on.

On power up, the default is BOOSTOFF.

See also:

BOOSTOFF, OUT

10-257/98 MN1260

11Axes 0 and 1 only

CAM/CM
CAMA

Purpose:

To begin a cam profile of a table of points which can be defined relatively or absolutely.

Format:

CAM[axes] = <expr> {,<expr> }

v = CAM[axis]

Abbr. Read Write Command Multi-Axis Scaled Default Range

CM ❑ ❑ ❑11 – 0 to 7

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑

The CAM keyword will begin motion on the cam table defined by the cam0 variable for
axis 0 and cam1 for axis 1. For example:

DIM cam0(10) = 9,10,20,30,40,50,40,30,20,10

The first element in the table defines the number of segments
used to make up the cam.

The cam table can be made up of relative positions or absolute positions within the cam
profile. The nature of the positions is given by command used to start cam profiling. The
CAM command interprets the values in the table as relative values. The CAMA command
interprets the values as absolute positions within one cam cycle.

A cam can be defined to execute once as follows:

CAM.0 = 0

10-26 7/98MN1260

or indefinitely

CAM.0 = 1

The CAMA/CAM keywords accept one of the following values:

CAM Value Function

0 One shot cam

1 Continuous cam. Cam table restarts when end is reached

2 One shot cam triggered by a fast interrupt.

3 Continuous cam. Triggered by a fast interrupt.
Successive fast interrupts will reset the cam.

+4 Adding 4 to the CAMA keyword will reference all
absolute positions to the motor position and not the cam.

Reading the CAM keyword will return the currently executing cam segment size. The
current segment or index in the cam table is read using the CAMINDEX keyword. For
example:

CAM.1 = 0
PAUSE CAMINDEX.1 = 10

OUT1 = 1

PAUSE CAMINDEX.1 = 12

OUT1 = 0

will execute a cam on axis 1. When the 10th cam point is executed, output bit 1 is set.
The output is cleared on the 12th cam point.

The cam profile is linked to the master position by the MASTERINC keyword. For
example:

MASTERINC = 1000

the slave will move the distance given by a cam segment in the cam table for every 1000
counts of the master. The master can be defined as the encoder of another axis, the pulse
follower input or a fixed speed. This is given by the FOLLOWAXIS keyword. A table of
different master increments can be set-up in the minc0 variable (minc1 for axis 1). For
example:

DIM minc0(10) = 100,200,100,200,100,200,100,200,100,200

the positions in the table are defined in relative terms. The number of positions must
equal the number of positions in the cam table. The master increment table will override
the MASTERINC keyword.

10-277/98

Notes:

• The first element in the cam table defines the number of cam segments. This allows
for greater flexibility in defining different tables.

• When a CAM command is executed, the status display will show a small ‘c’ and
MODE will return 16.

• Assigning a value of 0 to a cam segment will cause the slave to wait the measured
distance on the master.

• It is assumed that the master is moving in one direction only.

• Absolute cams have a starting position of 0 within the cam cycle.

• If the MASTERINC value is less than the maximum master input speed (per servo
loop closure), the cam will not execute correctly. Ideally the MASTERINC value
should be at least 5 times the master speed i.e. a cam segment will be executed over 5
servo loops. For example:

• Maximum master input speed is 60000 counts per second. With a 2ms loop closure
time, the speed per servo loop is 60000/500 = 120 counts. This would make a
minimum MASTERINC value of 600 counts.

• Multiple cam tables can be defined using the CAMSTART and CAMEND keywords.

• Cam profiling is applicable only to axes 0 and 1.

See section 6.7 for further details on cam profiling.

See also:

CAMEND, CAMINDEX, CAMSTART, FLY, FOLLOWAXIS, GEARN, GEARD,
MASTERINC, MOVECAM

MN1260

10-28 7/98MN1260

12Axes 0 and 1 only

CAMINDEX/CI

Purpose:

To return the currently executing cam segment index

Format:

v = CAMINDEX[axis]

Abbr. Read Write Command Multi-Axis Scaled Default Range

CI ❑ ❑12 – –

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑

When cam profiling is performed on a cam table, the currently executing segment in the
table can be read using the CAMINDEX keyword.

Example:

DIM cam0(11) = 10,20,30,40,50,60,50,40,20,20,10

The value in the table can be read as follows:

? cam0(CAMINDEX.0 + 1)

Note that one is added to take into account the first parameter of the cam table which is
used to set-up the number of cam segments.

See also:

CAM, CAMEND, CAMSTART

10-297/98 MN1260

13Axes 0 to 1 only

CAMEND/CE

Purpose:

To define an end point in the cam table if multiple cams are required.

Format:

CAMEND[axes] = <expr> {,<expr>}

v = CAMEND[axis]

Abbr. Read Write Command Multi-Axis Scaled Default Range

CE ❑ ❑ ❑13 – 1 to 6000

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑

By default the number of cam points in a cam table is given by the first element in the
cam table. If multiple cams are required, the start and end positions in the cam can be
defined. For example:

CAMSTART.0 = 10

CAMEND.0 = 20
DIM cam0(21) = 0,10,20,30,40,50,60,70,80,90,100,

100,90,80,70,60,50,40,30,20,10

Note that the first element in the cam table is given as 0. This instructs MINT to use the
CAMEND keyword to define the last element in the cam table. The CAMSTART
keyword is used to define the start element for the cam. Therefore, for the above
example, a cam profile will be based on cam segments 10 to 20 (values 100 to 10).

Note that it is assumed that the first element has an array index value of 0, and the cam
segment values start at 1. The actual start cam segment value will be given by:

v = cam0(CAMSTART.0 + 1)

CAMEND only applies to axes 0 and 1.

10-30 7/98MN1260

14Axes 0 and 1 only

See also:

CAM, CAMA, CAMINDEX, CAMSTART

CAMSTART/CS

Purpose:

To define a start point in the cam table if multiple cams are required.

Format:

CAMSTART[axes] = <expr> {,<expr>}
v = CAMSTART[axis]

Abbr. Read Write Command Multi-Axis Scaled Default Range

CS ❑ ❑ ❑14 – 1 to 6000

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑

By default the number of cam points in a cam table is given by the first element in the
cam table. If multiple cams are required, the start and end positions in the cam can be
defined. For example:

CAMSTART.0 = 10
CAMEND.0 = 20

DIM cam0(21) = 0,10,20,30,40,50,60,70,80,90,100,

100,90,80,70,60,50,40,30,20,10

Note that the first element in the cam table is given as 0. This instructs MINT to use the
CAMEND keyword to define the last element in the cam table. The CAMSTART
keyword is used to define the start element for the cam. Therefore, for the above
example, a cam profile will be based on cam segments 10 to 20 (values 100 to 10).

10-317/98 MN1260

Note that it is assumed that the first element has an array index value of 0, and the cam
segment values start at 1. The actual start cam segment value will be given by
cam0(CAMSTART.0 + 1).

See also:

CAM, CAMA, CAMEND, CAMSTART

CANCEL/CN

Purpose:

To cancel any errors but retain the current position.

Format:

CANCEL[axes]

Abbr. Read Write Command Multi-Axis Scaled Default Range

CN ❑ ❑ – –

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

CANCEL will clear any motion errors and the move in progress but retain the motor
position, unlike RESET. This can be used to recover from errors in an ONERROR routine
with the exception of limit errors. If a limit error exists and the limit is still active, issuing
a CANCEL will not clear the error, use the DISLIMIT keyword instead.

CANCEL will also turn contouring off, and reset GEARN and GEARD to 0 and 1
respectively. The following error (FOLERR) is set to zero.

On SmartMove, if the outputs are in error, CANCEL will clear all the digital outputs.

10-32 7/98MN1260

Example:

#ONERROR

REM We have a following error
IF ERROR.0 = _maxfe DO

CANCEL.0 : REM Cancel error

RETURN

ENDIF

RETURN

See also:

CONTON, DEFAULT, DISLIMIT, ERROR, FOLERR, LIMIT, #ONERROR, RESET

CAPTURE/CP

Purpose:

To determine what data is captured for future analysis and initiate data capture.

Format:

CAPTURE[axis] = <expr>

v = CAPTURE[axis]

Abbr. Read Write Command Multi-Axis Scaled Default Range

CP ❑ ❑ ❑ – 1 to 3

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SMM/1 SMM/2 SMM/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

The CAPTURE keywords defines the source and axis of data to be capture and begins
data capture. CAPTURE accepts a value of between 1 and 3. This corresponds to the
following data:

10-337/98 MN1260

Value Description

1 Capture the axis velocity

2 Capture the axis following error

3 Capture the axis position

CAPTURE can only capture one data source, one axis, at a time. The axis to capture is
specified by the axis parameter passed as follows:

CAPTURE.1 = 2

will capture the following error on axis 1.

Data capture is discussed in detail in section 7.5.

See also:

AUX, DATATIME

CARD/CD

Purpose:

To read the current card address on a RS485 controller.

Format:

v = CARD

Abbr. Read Write Command Multi-Axis Scaled Default Range

CD ❑ – 0 to 15

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ n/a n/a

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Returns the card number (0 to 15). The card number is set by a series of DIP switches on
the controller card. See the hardware guide for more information.

10-34 7/98

In a multi-drop system, the CARD keyword can be useful for establishing the controller
number.

See also:

$ (select controller)

CHR

Purpose:

To print non-ASCII characters. Used in conjunction with PRINT.

Format:

PRINT CHR(<expr>)

CHR is used within the PRINT statement to issue special characters to a terminal
emulator.

Example:

PRINT CHR(7)

will issue a beep at the user terminal.

CHR is useful for sending Escape string to a terminal. For example:

PRINT CHR(27),”[1;1”,CHR(27),”[J”,

will home the cursor and clear the screen on a VT100 compatible terminal.

Note the use of the comma to suppress line feeding.

See also:

BINARY, LINE, PRINT

CIRCLEA/CA

Purpose:

To perform a circular move with absolute co-ordinates.

Format:

CIRCLEA[axis0,axis1] = <centre0>,<centre1>,<angle>

MN1260

10-357/98 MN1260

15Axes 0 and 1 only

Abbr. Read Write Command Multi-Axis Scaled Default Range

CA ❑ ❑15 ❑ – –8388607 to
838867.0
–360.0 to

360.0 (angle)

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Absolute circular interpolation: Circular interpolation is only valid on axes 0 and 1.

<centre0> and <centre1> are absolute positions with the limitation that the positional
offset must be less than 218. <angle> refers to the angular increment for the circular arc
(±360.00o). Positive numbers refer to anti-clockwise motion. An out of range error is
returned if the calculated radius of motion is outside the range 10-218 quadrature counts
or the offset from the current position is greater than 218. For example if the current
position is 0,0, the following would be invalid (assuming SCALE = 1):

CIRCLEA = 40000,0,90 : GO

The command will be accepted during a current positional move but will not be executed
until the next GO statement.

Example:

SPEED = 20,20
CONTON

VECTORA = 80,20 : GO

CIRCLEA = 100,0,-90 : GO

PAUSE IDLE[0,1] : REM Wait for axes to stop before
CONTOFF : REM Turning contouring off

10-36 7/98

Assuming a starting position of 40,-20,
this executes a straight line segment on
axes 0 and 1 followed by a circular arc of
90 degrees at constant speed of 20. Note
that it is imperative to set the axis speeds
and accelerations to the same value before
executing the move since these refer to
speeds and accelerations along the vector
of motion.

Notes:

Reading the keywords MOVEA or MOVER will return the final position of the
circular move.

Steppers motors will only accept a position offset of 215 and not 218

Reading the OFFSET keyword will return the remaining length of the move.

The minimum radius is 10 counts.

See also:

ACCEL, CIRCLER, CONTOFF, CONTON, GO, OFFSET, MODE, RAMP, SCALE,
SPEED, VECTORA, VECTORR

MN1260

10-377/98 MN1260

16Axes 0 and 1 only

CIRCLER/CR

Purpose:

To perform a circular move with relative co-ordinates.

Format:
CIRCLER[axis0,axis1] = <centre0>,<centre1>,<angle>

Abbr. Read Write Command Multi-Axis Scaled Default Range

CR ❑ ❑16 ❑ – –8388607 to
838867.0
–360.0 to

360.0 (angle)

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Relative circular interpolation: Circular interpolation is only valid on axes 0 and 1.

<centre0> and <centre1> are relative to the current position. <angle> refers to the
angular increment for the circular arc (±360.00o). Positive numbers refer to anti-clockwise
motion. An out of range error is returned if the calculated radius of motion is outside the
range 10-218 quadrature counts. The command will be accepted during a current
positional move but will not be executed until the next GO statement.

Example:

CR = 100,100,90 : GO

Example 2:

SPEED = 20,20

CONTON
VECTORR = 40,40 : GO

CIRCLER = 20,-20,-90 : GO

PAUSE IDLE[0,1] : REM Wait for axes to stop before

CONTOFF : REM Turning contouring off

10-38 7/98

Assuming a starting position of 40,-20, this
executes a straight line segment on axes 0
and 1 followed by a circular arc of 90
degrees at constant speed of 20. Note that it
is imperative to set the axis speeds and
accelerations to the same value before
executing the move since these refer to
speeds and accelerations along the vector of
motion.

Notes:

Reading the keywords MOVEA or MOVER will return the final position of the
circular move.

Steppers motors will only accept a maximum position offset of 215 and not 218

Reading the OFFSET keyword will return the remaining length of the move.

The minimum radius is 10 counts.

See also:

ACCEL, CIRCLEA, CONTOFF, CONTON, GO, OFFSET, MODE, RAMP, SCALE,
SPEED, VECTORA, VECTORR

CLS

Purpose:

To clear a VT100 (or VT52) compatible or LCD screen.

Format:

CLS

Clear the terminal screen and the LCD display if connected. The cursor is placed in the
top left corner. CLS is VT100 compatible (TERM can be used to configure CLS for VT52
terminal emulation).

Example:

CLS

? “Home Position”

See also:

LOCATE, TERM

MN1260

10-397/98

COMMSOFF

Purpose:

To turn protected communications protocol off.

Format:

COMMSOFF

Turns the protected communications protocol off allowing the serial port to be used to
standard I/O statements such as PRINT and INPUT.

See also:

COMMSON, DIM

COMMSON

Purpose:

To turn protected communications protocol on.

Format:

COMMSON

Turns the protected communications protocol on. COMMSON will make MINT aware of
protected data packets. Issuing COMMSON will automatically define an array variable
COMMS which is 99 elements in length. This must be placed before any DIM statements
for correct execution. For example:

COMMSON
DIM xpos(100)

DIM ypos(100)

COMMSON will disable Ctrl-E until COMMSON is terminated by sending a special data
packet.

COMMSON cannot be issued at the command line.

Subsequent uses of COMMSON will turn the protected protocol on and can be used in
conjunction with COMMSOFF to turns communications on and off from within the
program.

See section 12 on protected communications for full details.

See also:

COMMSOFF, DIM

MN1260

10-40 7/98MN1260

CONFIG/CF

Purpose:

To configure an axis for different motor types or to turn an axis off.

Format:

CONFIG[axes] = <motor type> {,<motor type>}

v = CONFIG[axis]

Abbr. Read Write Command Multi-Axis Scaled Default Range

CF ❑ ❑ ❑ 1 0 to 4 (servo)
2 0 to 3 (stepper)

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Configures the axis for stepper or servo control. For example:

CONFIG[0,1,2] = _servo, _stepper, _off

This will configure axis 0 as a servo, axis 1 as a stepper and turn axis 2 off. CONFIG will
always issue a RESET and will reset the speeds and accelerations to their defaults. The
values accepted by CONFIG are:

Value Constant Motor Type

0 _off Turn the axis off

1 _servo Servo motor

2 _stepper Stepper motor

3 _micro Micro stepper

4 _inverter Inverter drive 0-10v plus direction

10-417/98 MN1260

The default values for the speeds and acceleration, expressed in Quad Counts/Steps, are:

Keyword Motor Type Default

SPEED servo/micro step 80000

SPEED stepper 1000

ACCEL servo/micro step 3000000

ACCEL stepper 3000

HMSPEED servo/micro step 20000

HMSPEED stepper 500

Turning an axis off (CONFIG = 0) will result in a 10% speed-up in the execution of
MINT programs. This is useful in a 1 or 2 axis system where the remaining axes are not
used. With the axis turned off, its encoder position can still be read using either the POS
or ENCODER keyword. The axis can also be followed using the FOLLOW keyword.

See also:

ACCEL, DIR, ENCODER, HMSPEED, POS, SPEED

CONTOFF/CO

Purpose:

To turn contouring off.

Format:

CONTOFF

Abbr. Read Write Command Multi-Axis Scaled Default Range

CO ❑ – –

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

10-42 7/98MN1260

Sets contouring off at the end of a coordinated motion sequence.

Example:

SPEED = 20,20

CONTON
VECTORR = 40,40 : GO

CIRCLER = 20,-20,-90 : GO

PAUSE IDLE[0,1]

CONTOFF

Execute a straight line segment on axes 0 and 1 followed by a circular arc of 90 degrees at
a constant speed of 20.

See also:

CONTON

CONTON/CT

Purpose:

To turn contouring on.

Format:

CONTON

Abbr. Read Write Command Multi-Axis Scaled Default Range

CT ❑ – –

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Sets contouring on for the specified axes. This allows a coordinated positional motion
sequence to be executed without slowing down at the end of each move. Only valid when
a move is not in progress.

10-437/98

Example:

SPEED = 20,20

CONTON
VECTORR = 40,40 : GO

CIRCLER = 20,-20,-90 : GO

PAUSE IDLE[0,1]

CONTOFF

Execute a straight line segment on axes
0 and 1 followed by a circular arc of 90
degrees at a constant speed of 20.

CONTON will set-up contouring for all three axes on the card. MINT will therefore
expect any positional moves to be contoured. Mixing non-contoured moves and contoured
moves on the same card cannot be achieved.

See also:

ACCEL, CIRCLEA, CIRCLER, CONTOFF, GO, RAMP, SPEED, VECTORA,
VECTORR

COS

Format:

v = COS(<angle>)

Return the cosine of the angle, where the <angle> is in the range of 0 to 360 and can be
any valid MINT expression. The return value will be in the range of -1000 to 1000
representing -1 to 1.

Example:

? COS(30)

will print 866 to the terminal.

COS has no inverse function.

See also:

SIN, TA

MN1260

10-44 7/98MN1260

CURRLIMIT/CL

Purpose:

To restrict the DAC output voltage to within a defined range.

Format:

CURRLIMIT[axes] = <expression> {,<expression> ...}

v = CURRLIMIT[axis]

Abbr. Read Write Command Multi-Axis Scaled Default Range

CL ❑ ❑ ❑ 100 1 to 100.0

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑

CURRLIMIT restricts the output voltage of the DAC output. A value of 50 (%) will limit
the DAC output to ±5V. For example:

CURRLIMIT[0,1,2] = 50,50,60

will set the current limit of axes 0 and 1 to 50% and axis 2 to 60%.

CURRLIMIT is only applicable to current amplifiers. Using CURRLIMIT with velocity
amplifiers will only restrict the maximum velocity.

See also:

DAC, DEMAND, KINTRANGE

10-457/98 MN1260

DAC/DC

Purpose:

To write a value to the 12bit DAC.

Format:

DAC[axes] = <expression> {,<expression> ...}

v = DAC[axis]

Abbr. Read Write Command Multi-Axis Scaled Default Range

DC ❑ ❑ ❑ – -2047 to
2047

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑

DAC is used to write directly to the 12 bit DAC output. The axis must first be either
turned off or configured for stepper mode i.e.

CONFIG.0 = _off
DAC.0 = -1024

or:

CONFIG.0 = _stepper

DAC.0 = -1024

will give -5V output on the DAC.

Reading DAC in servo mode will return the current DAC value in the range of -2047 to
+2047.

DAC is similar to TORQUE mode but provides for more accurate control over the DAC
output.

See also:

AUXDAC, CONFIG, DEMAND

10-46 7/98MN1260

DATATIME/DT

Purpose:

To specify the time over which data capture occurs

Format:

DATATIME = <expr>

v = DATATIME

Abbr. Read Write Command Multi-Axis Scaled Default Range

DT ❑ ❑ – 0 to 32000

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SMM/1 SMM/2 SMM/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

DATATIME specifies the time in milli-seconds over which data capture will occur.
DATATIME should be called prior to the first call to CAPTURE.

Reading DATATIME will return the remaining capture time.

Data capture is discussed in detail in section 7.5.

See also:

AUX, CAPTURE

DECEL/DE

Purpose:

To set a deceleration rate on the axis.

Format:

DECEL[axes] = <expr> {,<expr> ...}

v = DECEL[axis]

10-477/98 MN1260

Abbr. Read Write Command Multi-Axis Scaled Default Range

DE ❑ ❑ ❑ ❑ 300,000 1000.0 to
8388607.0

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SMM/1 SMM/2 SMM/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

The DECEL keyword allows a deceleration value to be imposed on the axis. This applies
to the move types: CIRCLEA, CIRCLER, JOG, MOVEA, MOVER, OFFSET, PULSE,
VECTORA, VECTORR.

In order to allow backwards compatibility, DECEL must be switched on using the new
AXISCON keyword. If it is switched off, DECEL can be used, but any write to ACCEL
will overwrite the DECEL value with ACCEL.

DECEL like ACCEL is expressed in counts/second2. Unlike ACCEL, there is no
corresponding DECELTIME keyword.

Note: Due to the resolution and representation of numbers in MINT it is not
always possible to store the exact value of DECEL. When writing to DECEL,

the value is converted from units per second to counts per servo loop.
This can lead to rounding errors.

Example:

AXISCON.0 = AXISCON.0 | 01 : REM Turn off DECEL term
ACCEL = 1000

DECEL = 2000

Note the use of a binary number and bitwise OR to retain bit settings on AXISCON.

On a stop input becoming active, the axes will decelerate at the DECEL rate.

DECEL can be changed at any time during a move. MINT will change the deceleration
value on the fly if necessary, in order to stop at the correct end.

See also:

ACCEL, ACCELTIME, AXISCON, JOG, MOVEA, MOVER, OFFSET, PULSE,
STOP, VECTORA, VECTORR

10-48 7/98MN1260

DEFAULT/DF

Format:

DEFAULT[axes]

Abbr. Read Write Command Multi-Axis Scaled Default Range

DF ❑ ❑ – –

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Returns all motion variables to their power-up values. This is equivalent to switching the
controller off and then on again. It allows you to start afresh in commissioning should
things go very wrong. Note that DEFAULT is different to RESET in that RESET does not
reset the following parameters:

ACCEL, BACKOFF, CONFIG, CURRLIMIT, ERRORIN, FOLLOWAXIS, GAIN,
HMSPEED, KINT, KINTRANGE, KVEL, KVELFF, LOOPTIME, MFOLERR, RAMP,
SCALE, SPEED, WRAP

Example:

DEFAULT[0]

set axis zero parameters to their power-up values.

See also:

CANCEL, RESET

10-497/98 MN1260

DEMAND/DM

Purpose:

To read back the instantaneous motor demand.

Format:

v = DEMAND[axis]

Abbr. Read Write Command Multi-Axis Scaled Default Range

DM ❑ ❑ – -100 to 100%

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑

Return instantaneous motor demand. This returns a value in the range -100 to +100 which
represents the percentage of the amplifier peak current or voltage capability. The DAC
keyword can be used to read the actual 12 bit value written to the DAC.

Example:

TORQUE = 50

? DEMAND

will print 50 to the terminal.

See also:

CURRLIMIT, DAC, TORQUE

DIM

Purpose:

To reserve memory for array variables.

Format:

DIM {OFFLINE} array_name(<no_of_elements>) { = <array values> }

where <no_of_elements> and <array values> are MINT numbers and not expressions.

10-50 7/98MN1260

Reserves data space for array variables and optionally initializes them. Example:

DIM my_array(100)

declares an array variable called my_array with one hundred elements.

DIM y_position(10) = 1,2,3,4,5,6,7,8,9,10

declares an array y_position, where the first element, y_position(1), is equal to 1, second
equal to 2 etc.

The array variable name can also be used as a normal variable. For example:

y_position = 1

will treat y_position as a standard variable.

Data can also be reserved to reside on a memory card using the OFFLINE keyword. For
example:

DIM OFFLINE myData(100)

See section 4.5 on array data for more detail on the use of DIM.

Notes:

DIM cannot be used on the command line.

The COMMSON keyword, used to enable protected protocol mode, will automatically
create a 99 element array with the variable name comms. COMMSON must be placed
before any DIM statements.

Expressions or variables cannot be used in the array declaration. The following will
all result in an error:

DIM myData(x)

DIM myData2(3) = a,a+1,b+2

Character constants can be used in an array declaration:

DIM funcKey(6) = ‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’

See also:

COMMSON, DISPLAY, FREE, LOAD, OFFLINE, RELEASE, SAVE

10-517/98 MN1260

DINT
Purpose:
To disable MINT interrupts
Format:

DINT
The DINT command will disable MINT interrupts #IN0 to #IN7 and the fast position
interrupt (#FASTPOS). To ensure all subsequent interrupts are disabled when an interrupt
routine is called, the DINT command must be placed on the next line following the label.
For example:

#IN0
DINT
...

RETURN

The EINT command will re-enable MINT interrupts.

IMASK can be used to selectively enable MINT interrupts. If, for example, you which to
disable interrupts #IN0 to #IN3, the following command sequence would be used:

DINT : REM Disable interrupts
IMASK = 011110000
EINT : REM re-enable interrupts

See also:
#FASTPOS, #IN0..#IN7, EINT, IMASK, IPEND

DIR/DR
Purpose:
To define the active state of the direction output for inverter control

Format:
DIR = 0 or 1

Abbr. Read Write Command Multi-Axis Scaled Default Range
DR ❑ ❑ ❑ 0 to 1

Firmware Version Motor Type
Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑

Controller
ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑

10-52 7/98MN1260

The DIR keyword defines the active state of the direction output when used with inverters
that accept 0-10V and direction, since it is not possible to swap the motor demand cables
over as with a bi-directional system. See section 7.2.

DIR = 0

the output will be low for a requested negative motor direction (e.g. TQ = -10)

DIR = 1
the output will be high for a requested negative motor direction (e.g. TQ = -10)

See also:

CONFIG, TORQUE

DISLIMIT/DL

Purpose:

To disable the detection of end of travel limits.

Format:

DISLIMIT[axes]

Abbr. Read Write Command Multi-Axis Scaled Default Range

DL ❑ ❑ – –

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Disable limit switches so that powered movement can be undertaken while beyond limits.
DISLIMIT also performs a CANCEL command to clear the error condition. Once you
have driven off the limits, they must be re-enabled using ENLIMIT otherwise further limit
errors will not be detected.

10-537/98 MN1260

Example:

#ONERROR

DISLIMIT[0,1] : REM Disable limits
SERVOFF[0,1] : REM Allow manual movement of axis

PAUSE !LIMIT[0,1] : REM Wait to move off limits

SERVOC[0,1] : REM Servo power on

ENLIMIT[0,1] : REM Re-enable the limits

RETURN : REM and resume execution

If limits are not used they should ideally be tied to ground rather than relying on the
DISLIMIT keyword.

DISLIMIT will also turn contouring off, and reset GEARN and GEARD to 0 and 1
respectively.

Issuing a RESET command will re-enable the limits.

See also:

ENLIMIT, LIMIT

DISPLAY

Purpose:

To display all currently defined variables and array data.

Format:

DISPLAY

DISPLAY will show all the currently defined variables and their values followed by all the
array data.

See also:

RELEASE

10-54 7/98MN1260

ECHO/EO

Purpose:

To turn on and off command line echo

Format:

ECHO = <expr>

Abbr. Read Write Command Multi-Axis Scaled Default Range

EO ❑ 3 0 to 3

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SMM/1 SMM/2 SMM/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Using the ECHO keyword, command line echo can be turned off. ECHO uses bit setting
to determine its action:

Bit Function

0 If 0, command line echo is turned off. Terminal output commands such
as PRINT will still operate.

1 If 0, error messages will be not be reported to the terminal screen

The ECHO keyword should be used in conjunction with the POFF keyword to turn the
command line prompt off:

POFF

ECHO = 0

ECHO will also turn off echoing to the LCD operator panel.

See also:

POFF, PON

10-557/98 MN1260

EINT

Purpose:

To enable MINT interrupts

Format:

EINT

The EINT command will enable MINT interrupts (#IN0 to #IN7, #FASTPOS) that have
been disabled using the DINT command.

See also:

#FASTPOS, #IN0..#IN7, DINT, IMASK, IPEND

ENABLE/EB

Purpose:

To enable and disable the drives

Format:

ENABLE = <expr>

Abbr. Read Write Command Multi-Axis Scaled Default Range

EB ❑ ❑ – 0 or 1

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

The ENABLE keyword allows the enable output to be turned on or off without having to
use the ABORT keyword which generates an error. ENABLE accepts one of two values, 0
to turn the enable signal off, and 1 to turn it on, thus enabling the drives.

ENABLE is useful for velocity drives where the action of SERVOFF (servo off) does not
disable the drives therefore not allowing them to be moved by hand.

10-56 7/98MN1260

Example:

SERVOFF : REM Turn the servos off

ENABLE = _off : REM Disable the drives
PAUSE INKEY : REM Move motors until a key is pressed

SERVOC : REM Turn the servos on

ENABLE = _on : REM Enable the drives

This example will turn the servos off, so as not to generate a following error, and disable
all the drives. The motors can now be moved freely by hand until a key is pressed on the
terminal. The servos will then be turned on at their current position and the drives
enabled.

See also:

#ONERROR, ABORT, SERVOC, SERVOFF, SERVON

ENCODER/EN

Purpose:

To read back the encoder position when an axis is either in stepper mode or is switched
off.

Format:

ENCODER[axes] = <expr> {,<expr> ...}

v = ENCODER[axis]

Abbr. Read Write Command Multi-Axis Scaled Default Range

EN ❑ ❑ ❑ – -8388607 to
8388607

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑

10-577/98

Returns the encoder position. This will allow for a form of closed loop on a stepper
motor. If we assume that we have the same number of quad count to steps on the stepper
motor, the following subroutine, correction, can be used to correct for any missing steps:

SF = 1

MA = 1000 : GO
PAUSE IDLE

GOSUB correction

END

#correction
REM Read the position we should be at

finalPos = POS[0]

REM Keep correcting until we get to the position

WHILE ENCODER.0 <> finalPos
MR.0 = finalPos - ENCODER.0 : GO.0

PAUSE POS.0 = MOVEA.0:REM Wait till pulse chain complete

WAIT = 20 :REM Wait till motor has stopped oscillating

:REM This value can be ‘tuned’
ENDW

REM Reset the position to the actual encoder position

POS.0 = ENCODER.0

RETURN

Notes:

• ENCODER is not scaled by the SCALE keyword and must be scaled in software.

• The encoder position can be set by writing to the ENCODER keyword.

• Writing to ENCODER has no effect on POS and vice versa

• The ENCODER value is latched to FASTENC on a fast interrupt.

The ENCWRAP keyword can be used to restrict the ENCODER value in the range of 0 to
(ENCWRAP-1). This is useful in rotary systems to determine the position of the motor in
one revolution. For example, a encoder has 4000 counts per revolution

ENCWRAP = 4000
will return an encoder value in the range of 0 to 3999.

See also:

#FASTPOS, ENCWRAP, FASTENC, POS

MN1260

10-58 7/98MN1260

ENCWRAP/EW

Purpose:

To restrict the ENCODER value in the range of 0 to (ENCWRAP-1)

Format:

ENCWRAP[axes] = <expr> {,<expr> ... }

Abbr. Read Write Command Multi-Axis Scaled Default Range

EW ❑ ❑ 0 0 to 65535

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑

The ENCWRAP keyword is used to restrict the ENCODER value in the range of 0 to
(ENCWRAP-1). This is useful in rotary systems to determine the position of the motor in
one revolution. For example, a encoder has 4000 counts per revolution

ENCWRAP = 4000

will return an encoder value in the range of 0 to 3999.

ENCWRAP is equivalent to :

ENCODER = ENCODER % ENCWRAP

A value of 0 will disable the ENCWRAP keyword allowing the full range value for the
ENCODER keyword. ENCWRAP will only affect the ENCODER keyword and not the
POS keyword.

See also:

ENCODER, FASTENC

10-597/98 MN1260

END

Purpose:

To terminate program execution.

Format:

END

Ends program execution and returns the user to the prompt. If END is placed in a
configuration file, the program file is executed.

ENLIMIT/EL

Purpose:

To enable the detection of end of travel limits.

Format:

ENLIMIT[axis]

Abbr. Read Write Command Multi-Axis Scaled Default Range

EL ❑ ❑ – –

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Enable the detection of the limit switches after a DISLIMIT command. This is the default
on power up or when RESET is issued.

10-60 7/98

Example:

#ONERROR

DISLIMIT[0,1] : REM Disable limits
SERVOFF[0,1] : REM Allow manual movement of axis

PAUSE !LIMIT[0,1] : REM Wait to move off limits

SERVOC[0,1] : REM Servo power on

ENLIMIT[0,1] : REM Re-enable the limits

RETURN : REM and resume execution

ENLIMIT is different from DISLIMIT in that it does not force a CANCEL.

See also:

DISLIMIT, LIMIT, RESET

ERR

Purpose:

To read the MINT error which resulted in the calling of ONERROR.

Format:

v = ERR

When ONERROR is called, ERR is set with an error number. This can be used in the
ONERROR routine to determine the error. ERR should be used on conjunction with
ERROR to determine the axis error.

Error handling is explained in more detail in section 8.

See Also:

ERROR, ERRAXIS

MN1260

10-617/98 MN1260

ERRAXIS

Purpose:

To read the number of the axis which resulted in the calling of ONERROR.

Format:

v = ERRAXIS

When ONERROR is called, ERRAXIS is set with the number of the axis which resulted
in the error. This can be used in the ONERROR routine to determine the error. ERR
should be used on conjunction with ERR to determine the axis error.

Error handling is explained in more detail in section 8.

See Also:

ERROR, ERR

ERROR/ER

Purpose:

To read back the motion error.

Format:

v = ERROR[axis]

Abbr. Read Write Command Multi-Axis Scaled Default Range

ER ❑ ❑ – 0 to 11

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

10-62 7/98MN1260

A read only motion variable that is used to identify axis error conditions as follows:

Code Constant Status LED Meaning

0 No error condition (see MODE).

1 _abort E Software abort.

2 _maxfe F Max following error exceeded.

3 _limit L Limit switch closed.

11 _external Ø External (error input) error.

13 ß Digital output error (SmartMove)

The only way to recover from an error without disconnecting power is to issue the
RESET, DISLIMIT or CANCEL commands. Unless there is an error handling routine
present (see ONERROR), the interpreter will terminate and issue an error message via the
serial port.

Example:

#ONERROR

IF ERROR.0 = _limit DO : REM Limit error
DISLIMIT.0 : REM Disable the limits

SERVOFF.0 : REM Disable amplifiers

PAUSE !LIMIT.0 : REM Manually move off limits

SERVOC.0 : REM Restore power to motors
ENLIMIT.0 : REM Enable limits

ENDIF

RETURN

MINT/3.28 extends the values returned by ERROR should a datapacket be rejected. See
section 13.3.1 for more details.

See also:

ABORT, CANCEL, ENABLE, ERRORIN, FOLERR, LED, LIMIT, MFOLERR,
#ONERROR, RESET

10-637/98 MN1260

ERRORIN/EI

Purpose:

To set the active state of the external error input or read the current state of the input.

Format:

ERRORIN = <expr>

Abbr. Read Write Command Multi-Axis Scaled Default Range

EI ❑ ❑ 2 0 to 2

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Determines the state of the error input (external error). ERRORIN accepts one of the
following values:

Value Function

0 Error input active low.

1 Error input active high

2 Error input disabled

ERRORIN will default to 2 on power up and should be changed to suit your system.

Example:

ERRORIN = 0
will set the error input to active low. If an ONERROR subroutine is defined, this will be
called when the error input is grounded (connect to power if PNP inputs are used).

Reading ERRORIN will return the state of the error input.

See also:

ERROR, #ONERROR

10-64 7/98

EXIT

Purpose:

To terminate the current loop or block structure.

Format:

EXIT

Forces termination of a loop. EXIT can be used to leave any of the following loop
constructs:

FOR .. NEXT
LOOP .. ENDL

REPEAT .. UNTIL

WHILE .. ENDW

Program execution commences on the line following the terminating statement in the loop.
EXIT is useful for terminating loops when a condition becomes true:

LOOP
{statements}

IF IN1 = 1 THEN EXIT

{statements}

ENDL

? “End Loop”

if input 1 goes active, “End Loop” will be printed to the terminal.

See also:

FOR .. NEXT, LOOP..ENDL, REPEAT..UNTIL, WHILE..ENDW

FASTENC/FC

Purpose:

To return the instantaneous ENCODER position recorded by a fast interrupt

Format:

v = FASTENC[axis]

MN1260

10-657/98 MN1260

Abbr. Read Write Command Multi-Axis Scaled Default Range

FC ❑ ❑ – –

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SMM/1 SMM/2 SMM/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

The ENCODER position is latched to the FASTENC keyword on the fast interrupt. This
operates in the same way as FASTPOS. If an ENCWRAP value is defined, the FASTENC
value will be returned within the range of 0 to (ENCWRAP - 1).

Example:

#FASTPOS

IF MODE = _follow THEN OFFSET = FASTENC - 1000

RETURN

See also:

#FASTPOS, ENCODER, ENCWRAP, FASTPOS

FASTPOS/FP

Purpose:

To return the instantaneous position that was recorded on the fast interrupt.

Format:

v = FASTPOS[axis]

Abbr. Read Write Command Multi-Axis Scaled Default Range

FP ❑ ❑ ❑ – –

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

10-66 7/98

When the controller receives a fast interrupt, the axis position is read and stored in the
FASTPOS keyword. Unlike the POS keyword which is updated every loop closure (1 or 2
milli-seconds), the FASTPOS position is the axis position read at the time of the fast
interrupt. The maximum latency to read the fast position is in the order of 30 micro-
seconds.

If the #FASTPOS subroutine is defined, this will be called in response to the fast interrupt.
Unlike the MINT interrupts which require a minimum pulse width of 2ms, the fast
interrupt will be latched on a pulse width of about 30 micro-seconds, although a width of
100 micro-seconds is recommended. The fast interrupt is level dependent, the position
being latched when the fast interrupt is high.

Due to the speed of the fast interrupt, it may be necessary to de-couple the input to avoid
spurious calls to the #FASTPOS routine.

The value returned by the FASTPOS keyword is dependent on the scale factor.

Example:

#FASTPOS
REM Measure distance between 2 consecutive fast interrupts

IF FASTPOS.1 - lastFastPos > labelLength/2 DO

measured = FASTPOS.1 - lastFastPos

lastFastPos = FASTPOS.1
ENDIF

RETURN

In a mixed servo/stepper system, only the servo axes will be latched by the fast interrupt.

See also:

#FASTPOS, ENCODER, FASTENC, POS

FLY/FY

Purpose:

To create a flying shear by locking the slave position to master position with controlled
acceleration and deceleration.

Format:

FLY[axes] = <expr> {,<expr>}

MN1260

10-677/98 MN1260

17Axes 0 and 1 only

Abbr. Read Write Command Multi-Axis Scaled Default Range

FY ❑ ❑17 ❑ – -32767 to
32767

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑

Sets the incremental distance in user units to be moved as a result of the measured
movement (MASTERINC) on the master axis.

If a move is required that is longer than the valid range, moves must be split up.

Example:

Assuming the slave axis is running at a 1:1 ratio with the master, a slave move of 40000 is
required over a measured master distance of 40000:

MI = 20000
FY = 20000 : GO

MI = 20000

FY = 20000 : GO

When performing a FLY operation, the status display will show an F (with no flashing
dot) and the MODE keyword will return 15.

Assigning a value of 0 to FLY will cause the slave to wait the measured distance on the
master.

Notes:

• Flying shears are only supported on axes 0 and 1.

• It is assumed that the master is moving uni-directionally.

• The slave, given a positive, FLY will always move in a positive direction regardless of
the direction of the master.

• From esMINT v2.71, an OFFSET can be performed on a FLY. Previous, a “motion in
progress” error would result.

10-68 7/98MN1260

• FLY moves are buffered in the same was as position moves. To set an output, for
example, when the slave has reached its desired position, the OUT statement must be
placed after the buffered move as shown:

MI = 1000

FY = 500 : GO
FY = 1000 : GO

OUT0 = 1 : REM Set output when FY = 500 has finished

See section 6.8 for details on flying shears.

See also:

CAM. CAMA, FOLLOW, FOLLOWAXIS, GEARN, GEARD, GO, MASTERINC,
TRIGGER

FOLERR/FE

Purpose:

To return the instantaneous following error value.

Format:

v = FOLERR[axis]

Abbr. Read Write Command Multi-Axis Scaled Default Range

FE ❑ ❑ ❑ – -32767 to
32767

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑

10-697/98

Returns instantaneous following error where the following error is defined as the demand
position (where you want to be) minus the actual motor position. If the following error
exceeds the value set by MFOLERR (maximum following error) an error is generated
which is shown by an ‘F’ on the LCD display and the ERROR keyword will be set to 2. If
an ONERROR routine is defined, this will be called otherwise program execution will be
aborted with the error message:

ERROR: Program: Following error on axis Y at line XXX

Reading the following error during a move is useful for tuning the system. For example:

MOVEA = 100 : GO.0

WHILE !IDLE.0
? FE.0

ENDW

? FE.0

will print the following error continuously to the terminal while the move is in progress.

Note that the value returned is dependent on the scale factor, SCALE. For system
commissioning, the following error can be written to a DAC output using the AUX
keyword. This allows you to view the following error using an oscilloscope.

Velocity feedforward (KVELFF) can be used to reduce the dynamic following error.
KINT can be used to reduce the static following error.

See also:

AUX, ERROR, MFOLERR, POS, SCALE

FOLLOW/FL

Purpose:

To enable encoder following with a specified gear ratio.

Format:

FOLLOW[axes] = <expression> {,<expression> ...}

v = FOLLOW[axis]

MN1260

10-70 7/98MN1260

Abbr. Read Write Command Multi-Axis Scaled Default Range

FL ❑ ❑ ❑ 0 -127.996 to
127.996

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

The FOLLOW keyword will allow one encoder to follow another encoder on the same
controller. The expression defines the gear ratio and the direction between the two axes.
The led will show a backwards ‘F’ when in FOLLOW mode.

FOLLOW is stopped by either:

FOLLOW.0 = 0

or:

STOP.0

FOLLOW does not ramp up to speed using the defined acceleration. Therefore if you
execute FOLLOW on an axis which is already in motion, the axis will accelerate
instantaneously to the speed of the following motor.

During encoder following, an offset can be applied to the base speed using the OFFSET
keyword. See OFFSET for more details.

The FOLLOWAXIS is used to configure the axis to follow.

Reading FOLLOW will return the last value assigned to it. See section 6.6 for more
details on encoder following.

Note that the move can be triggered to start on an input
using the TRIGGER keyword.

See also:

CAM, CAMA, FLY, FOLLOWAXIS, FOLLOWAXIS, GEARN, GEARD, MODE,
OFFSET, PULSE, TRIGGER

10-717/98 MN1260

FOLLOWAXIS/FA

Purpose:

To set which axis to follow under FOLLOW mode.

Format:

FOLLOWAXIS[axes] = <axis> {,<axis> ... }

Abbr. Read Write Command Multi-Axis Scaled Default Range

FA ❑ ❑ ❑ 0 -2 to 5

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

FOLLOWAXIS is used in conjunction with the FOLLOW keyword to set the axis to
follow. For example:

FOLLOWAXIS[0] = 2

FOLLOW[0] = 1

Set axis 0 to follow axis 2 with a gear ratio of 1:1.

FOLLOWAXIS = 2,2
FOLLOW = 1,2.5

Axes 0 and 1 follow axis 2 (assuming AXES[0,1]) with a gear ratio of 1:1 and 2.5:1
respectively.

10-72 7/98MN1260

By default, axis 0 will follow axis 1 and axis 1 will follow axis 0. FOLLOWAXIS accepts
any of the following values:

Value Function

-2 Following the pulse timer input.

-1 Follow a constant base speed as set by SPEED.

0 Follow axis 0

1 Follow axis 1

2 Follow axis 2

3 Follow external encoder channel 0. Applicable only if the
external encoder interface is fitted (and with firmware option).

4 Follow external encoder channel 1. Applicable only if the
external encoder interface is fitted (and with firmware option).

5 Follow external encoder channel 2. Applicable only if the
external encoder interface is fitted (and with firmware option).

See also:

CAM, CAMA, FLY, FOLLOW, PULSE, XENCODER

FOR .. NEXT

Purpose:

To execute a series of instructions a specified number of times in a loop.

Format:

FOR <variable> = <expr1> TO <expr2> {STEP <expr3>}

{statements}

NEXT

The FOR loop is the BASIC implementation of the FOR loop allowing for incrementing
and decrementing of the <variable> as defined by the STEP size, <expr3>. <expr1> ,
<expr2> and <expr3> can be any valid expressions. FOR loops are terminated with a
NEXT statement. There must be no variable name after the NEXT statement as with
standard forms of BASIC.

10-737/98

Example:

FOR a = 1 TO 10 : REM Perform loop 10 times

REM Move to the XY position in the array
MOVEA = xpos(a), ypos(a) : GO

PAUSE IDLE[0,1] : REM Wait for axes to stop

OUT1 = _on : REM Set the output

WAIT = 250 : REM Wait 1/4 second

OUT = _off : REM Turn the output off
NEXT

When the loop terminates, the value of the variable will equal the upper limit (expr2). It
will never exceed it for a positive number.

FOR .. NEXT loops may be nested up to 10 levels as follows:

FOR a = 1 TO 100 STEP 10
MOVEA[0] = a : GO

FOR b = 1 to 10

MOVEA[1] = b : GO

NEXT
NEXT

A FOR NEXT loop can be terminated prematurely using the EXIT keyword.

See also:

EXIT, LOOP..ENDL, REPEAT..UNTIL, WHILE..ENDW

FREQ/FQ

Purpose:

To set a constant frequency output.

Format:

FREQ[axes] = <expression> {,<expression> ...}
v = FREQ[axis]

MN1260

10-74 7/98MN1260

Abbr. Read Write Command Multi-Axis Scaled Default Range

FQ ❑ ❑ ❑ – 124 to
8000000

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑

Allow user to set frequency output in the range of 124Hz to 8Mhz. The axis must be in
servo mode or turned off. i.e.

CONFIG[0] = _off

FREQ[0] = 1000

will give a 1000Hz frequency output on stepper axis 0.

See also:

CONFIG, DAC

GAIN/GN

Purpose:

To set the servo loop proportional gain.

Format:

GAIN[axes] = <expression> {,<expression> ...}
v = GAIN[axis]

Abbr. Read Write Command Multi-Axis Scaled Default Range

GN ❑ ❑ ❑ 0 0 to 255.0

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑

10-757/98 MN1260

18Axes 0 and 1 only

Sets the digital servo loop proportional gain. See the Getting Started Guide for details on
setting this parameter.

Example:

GAIN = 1.5,2.5

DEFAULT can be used to set all servo loop gains to zero.

The effects of the servo loop parameters can be monitored using the AUX keyword and an
oscilloscope. Alternatively, cTERM for Windows can be used for system tuning.

See also:

AUX, CURRLIMIT, DAC, DEFAULT, DEMAND, KINT, KINTRANGE, KVEL,
KVELFF, TORQUE

GEARD/GD

Purpose:

To define a denominator value for high resolution position following.

Format:

GEARD[axes] = <expr> {,<expr>}

v = GEARD[axis]

Abbr. Read Write Command Multi-Axis Scaled Default Range

GD ❑ ❑ ❑18 1 1 to 32000

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑

To overcome the limitations of MINT scaled integers, a gear ratio for position following
can be defined in terms of a numerator and denominator such that the ratio is defined as:

gear ratio = GEARN/GEARD

GEARD defines the denominator term.

10-76 7/98MN1260

19Axes 0 and 1 only

GEARD must be defined before GEARN can be used otherwise a Motion in Progress
error will result.

Note: Before an OFFSET move can be performed, it is important to ensure
that the initial fly acceleration ramp has completed. This restriction does not

apply from esMINT v2.71.

See also:

GEARN, FOLLOWAXIS, FOLLOW, PULSE

GEARN/GR

Purpose:

To define a numerator value for high resolution position following.

Format:

GEARN[axes] = <expr> {,<expr>}
v = GEARN[axis]

Abbr. Read Write Command Multi-Axis Scaled Default Range

GR ❑ ❑ ❑19 0 -32000 to
32,000

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑

To overcome the limitations of MINT scaled integers, a gear ratio for position following
can be defined in terms of a numerator and denominator such that the ratio is defined as:

gear ratio = GEARN/GEARD

GEARN defines the numerator term and will begin position following.

10-777/98

Example:

FOLLOWAXIS = -2 : REM Follow pulse timer input

MASTERINC = 10000 : REM Ramp up to speed on a flying shear
GEARD = 10

GEARN = 8 : REM Follow at 0.8

See section 6.6.2 on high resolution software gearboxes for future details.

GEARD must be defined before GEARN can be used otherwise a Motion in Progress
error will result.

Note: Before an OFFSET move can be performed, it is important to ensure
that the initial fly acceleration ramp has completed. This restriction does not

apply from esMINT v2.71.

Example:

FOLLOWAXIS = -2 : REM Follow pulse timer input

MASTERINC = 10000 : REM Ramp up to speed on a flying shear

GEARD = 10

GEARN = 8 : REM Follow at 0.8
LOOP

ENDL

#IN0

REM Only OFFSET when FLY segment has terminated.
IF MODE = 18 THEN OFFSET =10

RETURN

Note that the move can be triggered to start on an input
using the TRIGGER keyword.

See also:

GEARD, FOLLOWAXIS, FOLLOW, MASTERINC, PULSE, WRAP, TRIGGER

MN1260

10-78 7/98MN1260

GO

Purpose:

To begin synchronized motion.

Format:

GO[axes]

Abbr. Read Write Command Multi-Axis Scaled Default Range

GO ❑ ❑ – –

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

GO will begin motion on any pending move. A pending move is defined by any of the
following positional moves:

CIRCLEA, CIRCLER, FLY, MOVEA, MOVER, VECTORA, VECTORR

an example of a pending move would be:

VECTORA = 1000,2000

the move will only begin execution on a GO command.

GO will suspend program execution if a move is in progress until the current move on that
axis is complete. A move can be terminated with the STOP command.

Example:

MOVEA = 100
MOVER = ,200

GO[0,1] : REM Synchronize absolute and relative move

PAUSE IDLE[0,1]

will synchronize an absolute and a relative positional move.

10-797/98

GO will take into account the AXES string as in the following example:

AXES[0,1] : REM Default to axis 0 and 1

JOG.1 = 100 : REM Jog axis 1
MA = 10 : GO : REM Absolute move on axis 0

will result in a motion in progress error. This can be solved as follows:

AXES[0,1] : REM Default to axis 0 and 1

JOG.1 = 100 : REM Jog axis 1
MA = 10 : GO.0 : REM Explicit axis reference on GO

It is possible to synchronize moves off a digital input using the TRIGGER command as
shown:

TRIGGER.1 = 1 : REM Trigger off input 1

MOVEA.1 = 100 : GO.1

The axis will move to position 100 when digital input 1 goes from active to inactive.

See section 6.3.6 for more detail on GO.

Note that move commands sent to a MINT/3.28 based controller will execute
immediately without the need for the GO command.

See also:

CIRCLEA, CIRCLER, FLY, IDLE, MODE, MOVEA, MOVECAM, MOVER, STOP,
TRIGGER, VECTORA, VECTORR

GOSUB

Purpose:

To branch program execution to a subroutine.

Format:

GOSUB <subroutine_name>

Causes the program to branch to the subroutine with the label given by
<subroutine_name>. Since MINT does not support line numbers, all subroutines are
referenced by labels. RETURN is used to resume execution from the statement
immediately following the GOSUB statement.

MN1260

10-80 7/98

Example:

GOSUB init

...
END

#init

xpos = 0

ypos = 0
fast = 100

slow = 10

RETURN

Notes:

Subroutines can be nested up to 20 levels deep i.e. a subroutine can call another
subroutine which in turn can call another up to 20 levels.

A maximum of 40* labels can be defined for any given program.

A subroutine defined in the configuration file cannot be called from within the
program file and vice versa.

GOSUB cannot be used on the command line.

See also:

#, GOTO, #IN0..#IN7, #ONERROR, RETURN, #STOP

MN1260

10-817/98

GOTO

Purpose:

To branch unconditionally out of the normal program sequence to a specified label.

Format:

GOTO label_name

Branches unconditionally to a specified label.

Example:

{ statements }
GOTO label1

{statements }

#label1

GOTO should be used with care. Do not use GOTO to jump out of an interrupt routine,
loops or block IFs. For example:

LOOP

...

IF IN1 DO

...
IF IN2 THEN GOTO abortLoop

...

ENDIF

#abortLoop
...

ENDL

will eventually result in a “Stack overflow” error message.

GOTO cannot be used on the command line.

See also:

#, GOSUB

MN1260

10-82 7/98MN1260

HMSPEED/HS

Purpose:

To set the datuming (home) slew speed.

Format:

HMSPEED[axes] = <expression> {,<expression> ...}

v = HMSPEED[axes]

Abbr. Read Write Command Multi-Axis Scaled Default Range

HS ❑ ❑ ❑ ❑ 40000 2 to
5,300,000 (servo)

500 2 to
200,000 (step)

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

HMSPEED sets the slew speed for the homing routine. The acceleration rate is controlled
using the ACCEL keyword, deceleration with the DECEL keyword.

Using the HOME command, the axis will travel to the home switch at the speed set by
HMSPEED. On seeing the home switch (switch closes), the axis will backoff at a speed
of HMSPEED/BACKOFF until the home switch opens or the index (marker) pulse is seen.

Example:

BACKOFF.2 = 5

HMSPEED.2 = 100
HOME.2 = 0

will datum to the home switch at a speed of 100 units/sec and backoff from the home
switch at a speed of 20 units/sec.

See section 6.4 for more detail on homing.

See also:

ACCEL, BACKOFF, DECEL, HOME

10-837/98 MN1260

HOME/HM

Purpose:

To find the home position and optionally find an encoder marker pulse.

To read the status of the home switch.

Format:

HOME[axes] = <expression> {,<expression> ...}
v = HOME[axes]

Abbr. Read Write Command Multi-Axis Scaled Default Range

HM ❑ ❑ ❑ – 0 to 6

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Find home position. The value assigned to HOME determines the direction of movement
and whether an index pulse is located. For rotary systems you can datum on the index
only. HOME uses binary notation to determine the direction etc., as shown:.

Bit Number Action

0 1 to datum on home switch and seek index

1 1 to datum in a positive direction

2 1 to datum on the index pulse only (servo only)

10-84 7/98MN1260

HOME values are:

Binary value Meaning

0 (0) Negative seek, datum on switch

0001 (1) Negative seek, datum on index (servo only)

0010 (2) Positive seek, datum on switch

0011 (3) Positive seek, datum on index (servo only)

0100 (4) Seek index pulse negative direction (servo only)

0110 (6) Seek index pulse positive direction (servo only)

Datuming slews at a speed set by the HMSPEED keyword and an acceleration rate set by
the ACCEL keyword. The axis will reverse off a home switch at a speed of
HMSPEED/BACKOFF.

Example:

HMPSEED.2 = 10

BACKOFF.2 = 5
HOME.2 = 1

will datum to the home switch at a speed of 10 units/sec and then backoff at a speed of 2
units/sec until the index (marker) pulse is seen.

Notes

• Datuming does not take into account RAMP.

• Reading HOME will return the value of the home switch.

• See section 6.4 for more detail on homing.

See also:

ACCEL, BACKOFF, HMSPEED, IDLE, MODE

10-857/98 MN1260

IDLE/ID
Purpose:

To determine if motion has finished.

To set the idle following error (servo only).

Format:
IDLE[axes] = <expression> {,<expression> ...}

v = IDLE[axis]

Abbr. Read Write Command Multi-Axis Scaled Default Range
ID ❑ ❑ ❑ ❑ 16000 0 to 16000

Firmware Version Motor Type
Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller
ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Returns true (1) when controller is idle (mode of motion is zero).

Example:

HOME = 2,2

PAUSE IDLE[0,1]

This will home axes 0 and 1 and will wait for both axes to come to rest before continuing
program execution.

Writing to IDLE defines the permissible following error (servo only) at which point a
move is considered to be complete i.e.:

(MODE = _idle) AND (VELr <= VELw) AND (ABS(FOLERR) <= IDLEw)
(where r is to show the read value of the variable and w the value written to it).

writing to VEL defines the velocity at which IDLE considers the motor to be stationary.
By default, VEL is zero.

Example:

IDLE.0 = 10

MA.0 = 1000 : GO.0

PAUSE IDLE.0

the PAUSE IDLE statement will only terminate when profiling has stopped and the
following error is less than 10.

See also:

MODE, PAUSE

10-86 7/98

IF .. DO

Purpose:

To execute a series of instructions based on the value of an expression.

Format:

IF condition DO

...
{ELSE

...}

ENDIF

Whereas the IF THEN statement can only be used to execute one line of commands, the
block IF structure can execute a series of commands.

If the condition is true, the statements up to the ELSE or ENDIF will be executed. If the
condition is false, the statements after the ELSE or ENDIF statement will be executed.
ELSE is optional, statements following the ELSE will be executed only if the condition is
false. Note the use of the keyword DO in place of THEN.

Example:

IF IN5 AND IN6 DO

FOR a = 1 TO 10

REM Move the position XY
MOVEA = xpos(a), ypos(a) : GO

PAUSE IDLE[0,1] : REM Wait for axes to stop

OUT2 = _on : REM Set output

WAIT = 250 : REM Wait 1/4 second
OUT2 = _off : REM Output off

NEXT

ELSE

STOP[0,1]
ENDIF

IF POS > 100 DO

INCA = MOVEA + newPos : REM Set new end position

PAUSE IDLE
ENDIF

IF DO statements can be nested up to 10 levels.

MN1260

10-877/98

If the statements can fit onto one line and no ELSE is required,
IF .. THEN should be used for program speed.

See also:

IF..THEN

IF .. THEN

Purpose:

To execute a series of instructions based on the value of an expression.

Format:

IF <condition> THEN statements

If the condition is true the statements following THEN and up to the end of the line are
executed. The condition can be any valid expression (see section 4.6 on relational
operators).

Examples:

IF POS[0] > 100 AND POS[1] > 200 THEN STOP[0,1]

IF IN2 OR IN3 THEN GOSUB label1

Multiple statements are separated by colons and must be on the same line if they are to be
executed in the same IF statement.

Example:

IF IN1 THEN OUT1 = 0 : OUT2 = 1

If the statements cannot fit onto one line or an ELSE clause is required,
use the IF .. DO structure.

See also:

IF..DO

MN1260

10-88 7/98MN1260

IMASK/IM

Purpose:

To mask off MINT interrupts #IN0 to #IN7

Format:

IMASK = <expr>

v = IMASK

Abbr. Read Write Command Multi-Axis Scaled Default Range

IM ❑ ❑ 255 0 to 255

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

The IMASK variable is used to mask off selective MINT interrupts, #IN0 to #IN7.

Example:

To mask off interrupts #IN4 to #IN7 the following command is used:

IMASK = 000001111

DINT (disable interrupts) can be used first to ensure no interrupt is called before setting
the IMASK value.

In order for IMASK to take immediate effect within an interrupt routine, it must be placed
immediately following the label:

#IN0

IMASK = 011000000

…

RETURN

Reading IMASK will return the interrupt mask value.

IMASK can also be used to suspend a triggered move. See section 6.9 for details on
TRIGGER.

See also:

DINT, EINT, IPEND, TRIGGER

10-897/98 MN1260

IN

Purpose:

To read the digital inputs as an 8 bit value.

Format:

v = IN

Abbr. Read Write Command Multi-Axis Scaled Default Range

IN ❑ – ❑ – –

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Allows uncommitted user inputs 0 to 7 to be read as an eight bit binary number. This is
useful for reading dip switches attached to the digital inputs. Example:

BINARY IN

Prints the settings of the uncommitted user inputs to the screen.

Using bitwise arithmetic, individual bits can be tested:

IF IN & 15 THEN {statements}

if bits 0 to 3 are on then process the statement.

Individual bits can be accessed by adding the bit number to the IN keyword. For example:

a = IN1

will assign the value of input bit 1 to the variable a.

Alternatively, the dot notation can be used and a variable used to define the bit. For
example:

a = 2

b = IN.a

will assign the value if IN2 to b. Note that if a is not within the range 0 <= a <= 7, then
an “Out of Range” error will result.

10-90 7/98MN1260

An interrupt routine can also be called in response to an input. See section 5.3.2 for more
detail.

See also:

ANALOGUE, #IN, IN0..7, OUT, XIO

IN0/I0 .. IN7/I7

Purpose:

To read the individual bit values of the digital inputs.

Format:

v = IN0

v = IN1

v = IN2

v = IN3

v = IN4
v = IN5

v = IN6

v = IN7

Abbr. Read Write Command Multi-Axis Scaled Default Range

IO.. ❑ – –
I7

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Returns a value of either 0 or 1 for the input port 0 to 7, where 0 represents a grounded
input (connected to power if PNP inputs used).

Example:

my_var = IN3

Sets the user variable my_var to one if input 3 is high, or zero if low.

10-917/98 MN1260

Example 2:

IF IN2 OR IN3 THEN OUT1 = _on

If a #INx subroutine is defined, this will be called in response to a falling edge (a
transition of 1 to 0 as seen by the controller) on the input. For example:

#IN2

STOP[0,1]
PAUSE IDLE[0,1]

RETURN

See also:

ANALOGUE, #IN, OUT, XIO

INCA/IA

Format:

INCA[axes] = <expression> {,<expression> ... }
v = INCA[axis]

Abbr. Read Write Command Multi-Axis Scaled Default Range

IA ❑ ❑ ❑ ❑ – -8388607 to
8388607.0

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Sets a new end position for the current positional move, MOVEA or MOVER, equal to the
expression. Given a positive move, the new position must be greater than the current
position otherwise the current move will finish executing. Reading INCA will return true
or false to tell you whether the new end position has been set-up. If zero is returned the
new end position could not be set-up.

10-92 7/98

Example:

MOVEA = 100 :GO

PAUSE IN1 : REM Wait for an input
INCR = -10 : REM Set new end position

REM See of new end position setup otherwise perform a relative move.

IF !INCR THEN MOVER = -1 : GO

The new final position can be
read by reading either MOVEA
or MOVER.

Example:

On seeing an input, we want to
set a new position of the current
move equal to the current
position plus a relative distance of 10.

PAUSE IN0 : REM Wait for the input

INCA = POS + 10

PAUSE IDLE

Reading the OFFSET keyword will return the remaining move length.

See also:

INCR, MOVEA, MOVER, OFFSET

MN1260

10-937/98 MN1260

INCR/IR

Format:

INCR[axes] = <expression> {,<expression> ... }

v = INCR[axis]

Abbr. Read Write Command Multi-Axis Scaled Default Range

IR ❑ ❑ ❑ ❑ – -8388607 to
8388607.0

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Extends or retracts the current positional move, MOVEA or MOVER, by the expression
value. Given a positive move, the new position must be greater than the current position
otherwise the current move will finish executing. Reading either INCR will return true or
false to tell you whether the new end position has been set-up. If zero is returned the new
end position could not be set-up.

Example:

MOVEA = 100 :GO

PAUSE IN1 : REM Wait for an input

INCR = -10 : REM Set new end position

REM See of new end position setup otherwise perform a relative move.

IF !INCR THEN MOVER = -1 : GO

The new final position can be read
by reading either MOVEA or
MOVER.

10-94 7/98

Example:

In a one axis rolling feed system, a second encoder, on axis 1, is used to detect slip.
When the material is near the end of its move, we want to check for slip and correct for it.

PAUSE POS < nearEndPos

INCR = POS.0 - POS.1
PAUSE IDLE

Note that axis 1 should be set to servo off mode (SERVOFF) or its axis turned off
(CONFIG.1 = _off) to avoid following errors. Reading the OFFSET keyword will return
the remaining move length.

See also:

INCA, MOVEA, MOVER, OFFSET

INKEY/IK

Purpose:

To read the next key in the serial/keypad buffer.

Format:

v = INKEY

Abbreviation:

IK

INKEY reads a single character from the serial port buffer. IF no character is present it
will return zero, otherwise it returns the ASCII value of the character. (ASCII is an
international standard defining numeric equivalents to alphanumeric characters).

INKEY always returns the uppercase value of the characters A-Z. Thus:

my_var = INKEY

will return the value 65 (the ASCII value of ‘A’) to the variable my_var if the character ‘A’
or ‘a’is present in the buffer.

MN1260

10-957/98

INKEY is useful for front end menu operations. For example:

LOOP

? “Press”
? “1 .. Teach”

? “2 .. Replay”

key = 0

WHILE key = 0

key = INKEY : REM Get character from serial buffer
IF key = ‘1’ THEN GOSUB teach

IF key = ‘2’ THEN GOSUB replay

ENDW

ENDL

This will wait for key presses 1 or 2 and execute the relevant subroutine. Note the use of
‘key = INKEY’to capture the key press before interrogating it.

IF INKEY = ‘1’ THEN ...

IF INKEY = ‘2’ THEN ...

would result in key-presses being lost since if INKEY returned ‘1’ but MINT was
executing the line “IF INKEY = ‘2’”, the IF statement would evaluate to false and the
keypress discarded.

READKEY can be used to check which key on the keypad is currently being pressed.

See also:

INPUT, KEYS, READKEY, TERM

INPUT

Purpose:

To input a number using a terminal into a variable with the option of formatted entry.

Format:

INPUT {string,} variable { USING <int> {,<frac>}}

Input supports a string followed by a comma then a variable name as below:

INPUT “Enter a number “,a

Only a numeric input is accepted, otherwise the user will be requested to re-enter the
number. Pressing return without entering a number will retain the value of the variable.

MN1260

10-96 7/98MN1260

The USING parameter allows for formatted input. <int> is the number of integer places to
accept and <frac> is the number of fractional places to accept. The number is prefixed
with zeros where necessary.

If <int> is positive, signed numbers will not be accepted. If <int> is negative, signed
numbers are accepted. Pressing the ‘-’ key will toggle the sign of the number. The keys
accepted are:

Key Description

0 .. 9 Input number and move 1 char right. The decimal place will be
skipped. The cursor returns to the beginning of the input when the
last character is entered.

‘-’ Toggle the sign of the number if <int> is negative otherwise ignore.
The cursor will be places on the first number

‘.’ Move to the first number after the decimal place.

space Move one character to the right

del Delete the number and place a zero in its place. Move the cursor one
character to the left.

Example:

INPUT “A = “, a USING -5,2

Accept formatted signed input with 5 decimal places and 2 fractional places, i.e.
±99999.99

To provide feedback when using the keypad and display, use the BEEPON keyword. This
will sound the buzzer each time a key is pressed when using the INPUT statement.

See also:

BEEPOFF, BEEPON, INKEY, LOCATE, PRINT

INT

Purpose:

To return the integer value of an expression.

Format:

v = INT(<expression>)

Strips a MINT scaled integer of its fractional part. The expression can be any valid MINT
expression.

10-977/98 MN1260

Example:

PRINT INT(12.4 + 3.2)

will print 15 to the operator terminal.

? INT POS

will print the integer part of the position.

INT will effectively round down. To round to the nearest integer, add 0.5 to the
expression:

? INT(POS + .5)

will round the position up if the fractional part is greater than .5 otherwise round the
position down.

See also:

ABS

IPEND/IP

Purpose:

To read or clear pending MINT interrupts

Format:

IPEND = <expr>

v = IPEND

Abbr. Read Write Command Multi-Axis Scaled Default Range

IP ❑ ❑ ❑ – 0 to 255

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Reading IPEND will return all pending interrupts (#IN0 to #IN7). For example, if IPEND
returns 3 (011), then interrupts #IN0 and #IN1 are pending.

10-98 7/98MN1260

Writing to IPEND will clear or cause interrupts. For example:

IPEND = IPEND & 011111100

will clear interrupts #IN0 and #IN1

IPEND can also be used to clear a triggered move. See section 6.9 for details on
TRIGGER.

See also:

DIN, EINT, IMASK, TRIGGER

JOG/JG

Purpose:

To set an axis for integral speed control.

Format:

JOG[axes] = <expression> {,<expression> ...}

v = JOG[axis]

Abbr. Read Write Command Multi-Axis Scaled Default Range

JG ❑ ❑ ❑ ❑ – -5300000.0 to
5300000.0

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

JOG is used to set up integral speed control. JOG will accelerate/decelerate to speed at
the acceleration rate set by ACCEL but will not take into account RAMP, the acceleration
ramp smooth factor.

10-997/98

The JOG command can be executed at any time. If a move of a different time is already
in progress, the axis will go into JOG mode and accelerate or decelerate to its new speed.
For example:

MOVEA.0 = 100 : GO.0

PAUSE IN1
JOG.0 = -20

JOG is terminated with either the STOP command or by assigning a value of 0 to JOG.
This will bring the axis to a controlled stop.

Example:

Assuming the SCALE has been set to revs.

JOG = 10

will jog the motor at a constant speed of 10 revs/s.

JOG = -10

will jog the motor in a negative direction at a speed of 10 revs/s. The motor will
decelerate to a stop from its previous speed and accelerate to the new speed.

Example 2:

JOG = 20 : REM Jog at 20 units/sec

PAUSE IN1 : REM Wait for input 1

STOP : REM Stop motion

PAUSE IDLE : REM Wait for axis to stop
MA = 10 : GO : REM Perform an absolute positional move

note the use of PAUSE IDLE to wait for the axis to stop before setting up the absolute
positional move.

Using the TRIGGER keyword, a JOG move can be initiated on an input. For example:

TRIGGER.1 = 1

JOG.1 = 100

When the input goes low, the motor will start jogging. This is the same as:

#IN1

JOG.1 = 100

RETURN

See also:

ACCEL, MODE, SCALE, STOP, TRIGGER, VEL

MN1260

10-100 7/98MN1260

KEYS

Purpose:

To format and enable the keypad and display.

Format:

KEYS “ASCII Characters”

The KEYS keyword allows you to configure your own keypad for any particular ASCII
characters in an 8x8 array. The ASCII string following the keyword will define the keys.
If you are using a 4x4 keypad for example, you need to map the keys onto the 8x8 matrix
as shown in the example:

Assume you are using a 4x4 keypad and require the following layout:

9 8 7 A

6 5 4 B

3 2 1 <CR>

– 0 . <BS>

where <CR> is carriage return, and <BS> is backspace or delete.

The KEYS keyword will be defined as follows:

KEYS “987A....654B....321@....-0.~....................................”
REM | row 1 | row 2 | row 3 | row 4 | row 5 | row 6 | row 7 | row 8 |

This corresponds to the following 8x8 matrix:

9 8 7 A

6 5 4 B

3 2 1 <CR>

– 0 . <BS>

.

.

.

.

If keys are not used within the 8x8 matrix, they must be padded out with an arbitrary
character. In this case a decimal dot is used.

Since <CR> and <BS> are not directly supported using a standard keyboard, KEYS will
interpret ‘@’ as carriage return and will return ASCII code 13. ‘~’ is used to interpret
back space and will return ASCII code 8.

10-1017/98 MN1260

To use the standard keypad setting just type the following:

KEYS “”

Do not insert any characters within the quotes unless you wish to change to standard
keypad layout which is defined as:

.9.87FED~W4.Z56-X@0.VYU.AB1C.23

See READKEY below for details on the keys and their associated ASCII value for the
operator keypad.

If you are using your own keypad, please refer to its data sheet for its row/column
configuration. The connections must be made to the appropriate row/column pins on the
interface card. The keypad adapter is discussed in detail in the hardware guide.

See also:

INKEY, READKEY

KINT/KI

Purpose:

To set the servo loop integral gain term.

Format:

KINT[axes] = <expression> {,<expression> ...}

v = KINT[axis]

Abbr. Read Write Command Multi-Axis Scaled Default Range

KI ❑ ❑ ❑ ❑ 0 to 255.0

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑

Integral gain is used to overcome constant motor loading such as gravity on a vertical table
but can be used to overcome steady state following errors in other applications. KINT
would not normally be used for velocity drives since steady state errors are usually overcome
by the drive itself. See the Getting Started Guide for details on setting this parameter.

10-102 7/98MN1260

The effect of the integral gain on the DAC output can be reduced by setting the
KINTRANGE parameter otherwise instability may arise. KINT is usually found to have a
value of approximately GAIN/10.

The effects of the servo loop parameters can be monitored using the AUX keyword and an
oscilloscope.

Example:

GAIN = 1;

KR = 20; : REM KINT only has 20% effect on DAC
KINT = .1;

DEFAULT can be used to set all servo loop gains to zero.

KINT should only be set once all other servo gain
parameters have been correctly set-up.

See also:

AUX, CURRLIMIT, DAC, DEFAULT, DEMAND, GAIN, KINTRANGE, KVEL,
KVELFF, MFOLERR, TORQUE

KINTRANGE/KR

Purpose:

To restrict overall effect the integral gain has on the DAC output.

Format:

KINTRANGE[axes] = <expression> {,<expression> ...}

v = KINTRANGE[axis]

Abbr. Read Write Command Multi-Axis Scaled Default Range

KI ❑ ❑ ❑ ❑ 0 to 255.0

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑

10-1037/98 MN1260

Sets the integration limit for the integral gain. Accepts a value of 1 to 100%, where 100%
corresponds to a maximum integration range of ±10V See the Getting Started Guide for
details on setting this parameter.

Example:

KR = 25

KINT will have a maximum effect of 2.5V on the DAC output.

DEFAULT can be used to set all servo loop gains to zero and KR to 100%.

See also:

AUX, CURRLIMIT, DAC, DEFAULT, DEMAND, KINT

KVEL/KV

Purpose:

To set the servo loop velocity feedback gain term.

Format:

KVEL[axes] = <expression> {,<expression> ...}

v = KVEL[axis]

Abbr. Read Write Command Multi-Axis Scaled Default Range

KV ❑ ❑ ❑ ❑ 0 to 255.0

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑

Digital servo loop velocity feedback gain. See the Getting Started Guide for details on
setting this parameter.

DEFAULT can be used to set all servo loop gains to zero.

The effects of the servo loop parameters can be monitored using the AUX keyword and an
oscilloscope.

10-104 7/98MN1260

See also:

AUX, CURRLIMIT, DAC, DEFAULT, DEMAND, GAIN, KINT, KVELFF, TORQUE

KVELFF/KF

Purpose:

To set the servo loop velocity feedforward gain term.

Format:

KVELFF[axes] = <expression> {,<expression> ...}
v = KVELFF[axis]

Abbr. Read Write Command Multi-Axis Scaled Default Range

KF ❑ ❑ ❑ ❑ 0 to 255.0

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑

Digital servo loop velocity feedforward gain. See the Getting Started Guide for details on
setting this parameter.

Example:

KVELFF = 10.5;

Example 2:

KVELFF = KVEL

can be used for a current amplifier to reduce the following error during constant motion.
See the Getting Started Guide for further detail.

DEFAULT can be used to set all servo loop gains to zero.

The effects of the servo loop parameters can be monitored using the AUX keyword and an
oscilloscope. Alternatively, cTERM for Windows can be used.

See also:

AUX, CURRLIMIT, DAC, DEFAULT, DEMAND, GAIN, KINT, KVEL, TORQUE

10-1057/98 MN1260

LASTERR
Purpose:

To display the last error message that resulted in abnormal program termination.

Format:

LASTERR

Typing LASTERR at the command line will display the last error that resulted in program
termination. This is useful in stand-alone systems where a terminal is not connected to the
controller. If a programming error does occur, the LED status display will show an ‘E’.

See also:

ERROR, ERR, ERRAXIS

LED/LD
Purpose:

To set the 7 segment LED display to show the status of a particular axis.

Format:
LED = <expression>

v = LED

Abbr. Read Write Command Multi-Axis Scaled Default Range

LD ❑ ❑ 0 0 to 3

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Since there is only one LED status display, the LED keyword is used to show the status of the
assigned axis to the display. Note that axis 1 will light the decimal dot on the LED display.

LED = 2

will show the status of axis 2 on the LED display.

Reading the LED keyword will return the value assigned to it.

See also:

ERROR, MODE

10-106 7/98MN1260

LIMIT/LM

Purpose:

To read the status of the limit (end of travel) inputs.

Format:

v = LIMIT[axis]

Abbr. Read Write Command Multi-Axis Scaled Default Range

LM ❑ ❑ – –

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

LIMIT returns the status of the limit switch inputs. The keyword accepts axis parameters
in the normal manner. For example:

a = LIMIT.1

returns 1 to variable a if the limit input on axis 1 is asserted, 0 if the input is negated.

#ONERROR

REM Check for a limit error

IF ERROR.0 = _limit | ERROR.1 = _limit DO

DISLIMIT[0,1] : REM Disable limits and clear error
SERVOFF[0,1] : REM Turn servos off

PAUSE LIMIT[0,1] : REM Wait to move off limits

SERVOC[0,1] : REM Servo on

ENLIMIT[0,1] : REM Enable the limits

ENDIF
RETURN

shows the use of LIMIT within an ONERROR routine.

If the limits are disabled with DISLIMIT, their value can still be read using the LIMIT
keyword.

See also:

ERROR, DISLIMIT, #ONERROR, PAUSE

10-1077/98

LINE

Purpose:

To write a string to a specified line on the terminal, clearing all characters to the end of
the line.

Format:

LINE <line number>, <expression>

The LINE command will print the expression at the specified line on the display and then
clear the display to the end of that line (assuming 20 characters per line). The cursor is
returned to the end of the printed text.

The expression can be any expression supported by PRINT and will allow the use of the
USING parameter for formatted output. For example:

LINE 2, “A = “, a USING 5,2

will print the value of a at line 2 with formatted output.

Example

LINE 1,” EXIT”
LINE 2,”Main Menu”

LINE 3,”Select Function”

LINE 4,”SETUP START MANUAL”,

Note the use of the comma at the end of the line to suppress
line feeding which results in the display clearing.

See also:

LOCATE, PRINT

MN1260

10-108 7/98MN1260

LOAD

Purpose:

To load a file into the controller using a terminal editor other than cTERM or to load array
data into an executing program.

Format:

LOAD <buffer>

LOAD can be used to load programs and data into the controller if cTERM is not used.
Buffer corresponds to:

Value Buffer

-3 Load array data from memory card if fitted

-2 Load configuration file from memory card if fitted

-1 Load program from memory card if fitted

1 Program buffer, no checksum

2 Configuration buffer, no checksum

3 Array data, no checksum

4 Program buffer with checksum

5 Configuration buffer with checksum

6 Array data with checksum

LOAD can also be used within a program for downloading array data into an executing
program.

Example:

{ statements }

IF INKEY = ‘L’ THEN GOSUB getData

{ statements }

END
#getData

TIME = 0

REPEAT

IF INKEY = ‘3’ THEN : ? “Ok 3”: LOAD 3 : RETURN
UNTIL TIME > 1000 : REM TImeout after 1000ms

RETURN

10-1097/98

on receiving an ‘L’, the subroutine getData will be called. If ‘3’ is received the data will
be loaded, otherwise the routine will time-out. This can be used with cTERM which on
file load will send down the string “LOAD” followed by “3” for array data. cTERM will
then expect the response “Ok 3” before downloading the data.

Buffer values 4 to 6 should only be used with cTERM which provides a checksum to
check for data corruption. Always send “Ok 1” to “Ok 3” in acknowledgement and not
“Ok 4” to “Ok 6”.

Data can be loaded to the memory simply using the LOAD command. In order to retrieve
the array data from the memory card

LOAD -3

is used.

The upload/download routines as used within cTERM for DOS can be found on the
accompanying diskette. These are written in Turbo C but should be portable among most
C compilers. Alternatively the MINT Interface Library provides functions for Windows
for many of the popular development suites.

See also:

DIM, DISPLAY, SAVE

LOCATE

Purpose:

To locate the cursor on a VT100 (or VT52) terminal or the LCD display.

Format:

LOCATE <x>,<y>

Using VT100 (or VT52; see TERM) emulation, the cursor is located at column <x>, row
<y>, where the top left corner is at location column 1, row 1. <x> and <y> are not range
checked. The cursor will remain stationary if <x> or <y> are out of bounds of the screen
co-ordinates. Example:

LOCATE 10,10 : PRINT “Column 10, Row 10”

The string “Column 10, Row 10” will be printed at column 10, row 10.

<x> and <y> can be any valid MINT expression. If an LCD terminal is connected, the
cursor will be located at the given co-ordinates.

See also:

BOL, CLS, INPUT, LINE, PRINT, TERM

MN1260

10-110 7/98

LOOP .. ENDL

Purpose:

To perform an endless loop.

Format:

LOOP
{statements}

ENDL

This is the simplest type of loop in MINT, it loops round forever, for instance:

LOOP

JOG = ANALOGUE1/100

ENDL

loops round forever reading analog input one and jogging the motor to a maximum value
of 10.

Notes:

A loop can be terminated by use of the EXIT keyword.

LOOPs can be nested up to 10 levels deep.

See also:

EXIT, FOR..NEXT, REPEAT..UNTIL, WHILE..ENDW

MN1260

10-1117/98 MN1260

LOOPTIME/LT

Purpose:

To set the servo loop time and the number of axes supported.

Format:

LOOPTIME = <expression>

Abbr. Read Write Command Multi-Axis Scaled Default Range

LT ❑ ❑ 2 1 to 2

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑

Sets the loop closure time and the number of axes supported by MINT. Setting
LOOPTIME to 1 will give a loop closure time of 1 ms for one axis of servo control. The
second encoder is still accessible using the POS or ENCODER keyword.

LT = 1

A LOOPTIME of 2 will set a loop closure time of 2ms and support 3 axes of motion.

DEFAULT will set LOOPTIME to 2.

See also:

AXES, DEFAULT, TIME

10-112 7/98MN1260

20Axes 0 and 1 only

MASTERINC/MI

Purpose:

To define a distance on the master over which the slave CAM segment will move.

Format:

MASTERINC[axes] = <expr> {,<expr> ...}

v = MASTERINC[axes]

Abbr. Read Write Command Multi-Axis Scaled Default Range

MI ❑ ❑ ❑20 ❑ – 0 to 65535.0

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑

MASTERINC will set the measured distance on the master over which the CAM segment
will move. Note that the value applies to each individual CAM segment is a CAM table
and not to the entire CAM profile.

Example:

MASTERINC = 1000
MOVECAM = 500 : GO[0]

will move 500 counts on the CAM (slave) for 1000 counts on the master.

If different MASTERINC values are required for a CAM profile, these can be defined in
the minc0 (or minc1 for axis 1) array variables. The number of elements defined must be
the same as those in the CAM table.

Reading MASTERINC will return the current MASTERINC value which may be from the
minc0 table.

10-1137/98 MN1260

Notes:

The MASTERINC value and those defined in the array (mincX()) must be positive.

If the slave is following an external encoder, the MASTERINC values will be scaled
by the scale factor (SCALE) of the external encoder axis. For example:

FOLLOWAXIS.0 = 1 : REM Slave axis 0 to follow axis 1

SCALE[0,1] = 100,200 : REM Scale slave and master to mm
MASTERINC = 10 : REM Master increment given as 10mm

: REM equivalent to 10*200 quad counts

The scale factor SCALE[FOLLOWAXIS[axis]] is used for the conversion.

If the master input reference is given by the SPEED (FA = -1), the pulse timer input (FA =
-2) or one of the 3 channel encoder inputs (FOLLOWAXIS = 3,4,5), MASTERINC must
be given in quadrature counts.

See also:

CAM, FOLLOWAXIS, MOVECAM

MFOLERR/MF

Purpose:

To set the maximum permissible following error before an error is generated.

Format:

MFOLERR[axes] = <expression> {,<expression> ...}

a = MFOLERR[axis]

Abbr. Read Write Command Multi-Axis Scaled Default Range

MF ❑ ❑ ❑ ❑ 16000 0 to 32767.0

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑

10-114 7/98MN1260

Sets the maximum permissible following error before an error is generated. The following
error is defined as the demand position (where you want to be) minus the actual motor
position (where you are). If the following error exceeds the value set by MFOLERR
(maximum following error) an error is generated which is shown by an ‘F’ on the LCD
display and the ERROR keyword will be set to 2. If an ONERROR routine is defined,
this will be called otherwise program execution will be aborted with the error message:

ERROR: Program: Following error on axis Y at line XXX

Example:

SCALE = 500; : REM Scale to mm

MFOLERR = 4; : REM Max following error = 4mm

should the following exceed 4mm, an error will be generated.

See also:

AXISCON, ERROR, FOLERR, SCALE

MODE/MD

Purpose:

To return the current mode of motion.

Format:

v = MODE[axis]

Abbr. Read Write Command Multi-Axis Scaled Default Range

MD ❑ ❑ – 0 to 20

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

10-1157/98 MN1260

Returns the current mode of motion on the axis specified. Modes are as follows:

Code Constant Status LED Meaning Set by (MINT keyword)
0 _idle 8 Idle
1 _servoff – Servo amplifier power off SERVOFF
2 _linear P Linear positional move MOVEA/MOVER,

VECTORA/VECTORR
3 _jog J Jogging. JOG
4 _circular C Circular interpolation CIRCLEA/CIRCLER
5 _pulse U Pulse following PULSE
6 _torque q Torque control TORQUE
7 _homing H Homing (datuming) HOME
8 _offset o Offset OFFSET
9 _follow Æ Follow mode FOLLOW

10 reserved
11 c Cam segment MOVECAM
12 reserved
13 reserved
14 reserved
15 F Flying shear FLY
16 c Cam table execution CAMA/CAM
17 J Joystick mode JY

(MINT/3.28, stepper only)
18 g High resolution gear ratio GEARN
19 reserved
20 reserved

MINT constants can be used as shown::

PULSE = 1

PAUSE IN1
OFFSET = 10

PAUSE MODE = 5

can be replaced by:

PULSE = 1
PAUSE IN1

OFFSET = 10

PAUSE MODE = _pulse

during an OFFSET command.

10-116 7/98MN1260

To check when a move has finished execution, the following can be used:

MA[0,2] = 1000,-3000 : GO[0,2]

PAUSE MODE.0 = _idle AND MODE.2 = _idle

can be replaced by:

MA[0,2] = 1000,-3000 : GO[0,2]

PAUSE IDLE[0,1]

which detects when the motor has physically come to reset to within a user defined
following error rather than detecting the end of profiling.

See also:

IDLE, LED, TRIGGER

MOVEA/MA

Purpose:

To set up a positional move to an absolute position.

Format:

MOVEA[axes] = <expression> {,<expression ...}

v = MOVEA[axis]

Abbr. Read Write Command Multi-Axis Scaled Default Range

MA ❑ ❑ ❑ ❑ – -8388607 to
8388607.0

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Sets an absolute positional move. The command will be accepted during a current
positional move (CIRCLEA/R, MOVEA/R, VECTORA/R) but will not be executed until
the next GO statement.

10-1177/98

Example:

MOVEA[2] = -50 : GO[2]

Moves axis two to absolute position -50 counts from datum (zero point).

MA = 100,200 : GO

moves to absolute position 100,200 from the zero position. Reading MOVEA will return
the desired end position.

MOVEA = 100,200 : GO[0,1]

PRINT MOVEA.0;MOVEA.1

will print:

100 200

Setting AXISCON bit 3 to 1 will allow MOVEA to return the target position from the
profile generator. This value is passed to the servo/stepper control loop every cycle
(typically 2ms) and determines the position of the motor.

The positional move will follow the velocity profile defined by ACCEL, SPEED and
RAMP. During a positional move, the slew speed can be changed using the SPEED
keyword. The end position of the current move can be altered using either the INCA or
INCR keywords. For example:

MOVEA = 10 : GO

PAUSE IN1
INCA = 20

PAUSE IDLE

will set the end position to 20 on seeing digital input 1.

Reading the OFFSET keyword during a positional move will return the remaining move
length. For example, assuming a start position of 100:

MA = 200 : GO

? OFFSET

will return 100 since this is the length of the move in operation i.e. from position 100 to
200.

MA = 200 : GO

PAUSE POS >= 170

? OFFSET

will return a value of approximately 30. Note that OFFSET always returns a positive
number regardless of the direction of motion.

MN1260

10-118 7/98MN1260

See also:

ACCEL, AXISCON, CIRCLEA, CIRCLER, FLY, GO, INCA, INCR, MOVER,
OFFSET, RAMP, SPEED, STOP, TRIGGER, VECTORA, VECTORA

MOVER/MR

Purpose:

To set up a positional move to a position relative from the current position.

Format:

MOVER[axes] = <expression> {,<expression> ...}
v = MOVER[axis]

Abbr. Read Write Command Multi-Axis Scaled Default Range

MR ❑ ❑ ❑ ❑ – -8388607 to
8388607.0

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Sets up a relative positional move. The command will be accepted during a current
positional move (CIRCLEA/R, MOVEA/R, VECTORA/R) but will not be executed until
the next GO statement. If the desired end position is greater than 223 counts, the position
counter will wrap round. If for example a move is set up that goes beyond position +223,
MOVER will return a value in the region of -223.

Example:

MOVER[2] = -50 : GO : REM Assuming AXES[0,1,2]

Moves axis two 50 counts from the present position in a negative direction.

The positional move will follow the velocity profile defined by ACCEL, SPEED and
RAMP. During a positional move, the slew speed can be changed using the SPEED
keyword.

10-1197/98

The end position of the current move can be altered using either the INCA or INCR
keywords. For example:

MOVER = 10 : GO

PAUSE IN1
INCR = 20

PAUSE IDLE

will set a relative end position of 20 on seeing digital input 1.

Reading the OFFSET keyword during a positional move will return the remaining move
length. For example:

MR = 200 : GO

? OFFSET

will return 200 i.e. the length of the move in operation.

MR = 200 : GO
PAUSE POS >= 170

? OFFSET

will return a value of approximately 30. Note that OFFSET always returns a positive
number regardless of the direction of motion.

The OFFSET keyword is useful in indexing applications to determine how much of the
index is remaining. For example: in an indexing application, an output must be set 30mm
before the end of the move where each index is 100mm in length:

LOOP

MOVER = 100 : GO
PAUSE OFFSET <= 30 : REM Wait for 30mm before end

OUT1 = 1 : REM Set output

PAUSE IDLE : REM Wait to stop

OUT1 = 0 : REM Clear output
ENDL

See also:

ACCEL, CIRCLEA, CIRCLER, GO, INCA, INCR, MOVEA, OFFSET, RAMP,
SPEED, STOP, TRIGGER, VECTORA, VECTORA

MN1260

10-120 7/98MN1260

MP

Purpose:

To return the mode of motion in the move buffer.

Abbr. Read Write Command Multi-Axis Scaled Default Range

MP ❑ ❑ – –

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

If two moves are set-up without waiting for the first move to complete, the second move
will be buffered. In MINT/3.28, if a third move is sent, a NAK will result. In order to
determine when the buffer is free, the MP keyword can be read. If it returns 0, then the
buffer is free for the next move.

See also:

MODE, ZZ

NOT/!

Purpose:

To perform a logical not on an expression.

Format:

v = NOT <expr>

Abbreviation:

!

10-1217/98 MN1260

Logical NOT. If <expr> is true (non-zero) NOT <expr> will be 0 as shown in the table:

<expr> NOT <expr>

0 1

1 0

NOT is very useful when testing the state of binary inputs. For example:

IF !IN1 THEN OUT1 = 1

is the same as

IF IN1 = 0 THEN OUT1 = 1

The first expression however uses less code space and is quicker to execute.

Note that the expression:

IF A NOT = B THEN {statement}

is not valid, instead use:

IF A <> B THEN {statement}

See also:

AND, OR

OFFLINE

Purpose:

To define an off-line array. The array values are stored off-line on a memory card

Format:

DIM OFFLINE var(elements)

10-122 7/98MN1260

The OFFLINE keyword is used in conjunction with the DIM statement to specify off-line
array data.

DIM OFFLINE xpos(1000)

DIM OFFLINE ypos(1000)
DIM data(50)

SERVOFF

FOR a = 1 TO 1000

PAUSE IN1 : REM Wait for input 1
xpos(a) = POS.0 : ypos(a) = POS.1

NEXT

The array data xpos and ypos have both been defined as residing off-line on the memory
card by use of the OFFLINE keyword within the DIM statement. The array data can then
be used throughout the program as though the data resides within the controller address
space.

Off-line array data is discussed in detail in section 4.5.1.

See also:

DIM

OFFSET/OF

Purpose:

To perform a positional offset during pulse or encoder following.

Format:

OFFSET[axes] = <expression> {,<expression> ...}
v = OFFSET[axis]

Abbr. Read Write Command Multi-Axis Scaled Default Range

OF ❑ ❑ ❑ ❑ – -8388607 to
8388607.0

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

10-1237/98

Performs an offset during pulse or encoder following, i.e. an offset is performed on a base
speed. The axis must be in PULSE or FOLLOW mode. Note that GO is not required.
However if an OFFSET is set up while an OFFSET is being performed, MINT will issue
an “Motion in progress error”. OFFSET is ignored if MODE is IDLE.

From esMINT v2.71, can OFFSET can be performed on FLY.

OFFSET is the same as a relative move i.e. it follows a velocity profile, therefore all
parameters such as SPEED, ACCEL and RAMP will affect the profile. Note that SPEED
defines the relative speed from the base speed.

OFFSET = 10 : REM Perform move

PAUSE MODE = _pulse: REM Wait for offset to finish

The LED will show a small (when performing an offset.

Reading OFFSET will return the remaining vector size of the offset being
performed or of an positional move (MOVEA/R, CIRCLEA/R,
VECTORA/R). Note that the sign gives the direction of motion.

Reading the OFFSET keyword during a positional move will return the remaining move
length. For example:

MR = 200 : GO

? OFFSET

will return 200 i.e. the length of the move in operation.

POS.0 = 0

MA.0 = 200 : GO.0
PAUSE POS.0 >= 170

? OFFSET.0

will return a value of approximately 30.

The OFFSET keyword is useful in indexing applications to determine how much of the
index is remaining. For example: in an indexing application, an output must be set 30mm
before the end of the move where each index is 100mm in length:

LOOP

MOVER = 100 : GO
PAUSE OFFSET <= 30 : REM Wait for 30mm before end

OUT1 = 1 : REM Set output

PAUSE IDLE : REM Wait to stop

OUT1 = 0 : REM Clear output
ENDL

MN1260

10-124 7/98

Example of OFFSET:

PULSE = 1

OFFSET = 10:REM move forward 10
PAUSE MODE = _pulse

OFFSET = -10:REM Move back 10

OFFSET is discussed in more detail in the
infeed application note in the Getting Started
Guide.

See also:

ACCEL, DECEL, FLY, FOLLOW, MODE, MOVER, PAUSE, PULSE, RAMP,
SPEED, TIMER, TRIGGER, WRAP

OR/|

Purpose:

To perform a logical or bitwise OR operation.

Format:

<expr1> OR <expr1>

Abbreviation:

|

Logical OR used in conditional statements and loops, for example:

WHILE IN1 = 1 OR IN2 = 0

{statements}

ENDW

Logical OR is based on the following truth table

<expr1> <expr2> <expr1> OR <expr2>

0 0 0

0 1 1

1 0 1

1 1 1

MN1260

10-1257/98 MN1260

OR is a bitwise logical operator and can be used for setting bits in digital outputs. For
example:

OUT = OUT | 15

will set bits 0 to 3 and leave bits 4 to 7 intact.

See also:

AND, NOT

OUT/OT

Purpose:

To set the digital outputs.

Read the last output value.

Format:

OUT = <expression>

v = OUT

Abbr. Read Write Command Multi-Axis Scaled Default Range

OT ❑ ❑ ❑ 0 to 255

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Outputs are written to as an eight bit binary number.

Examples:

OUT = 3

sets the digital outputs to 3 binary, i.e.:

0 0 0 0 0 0 1 1

OUT = 0

will clear all the 8 outputs.

10-126 7/98

Alternatively binary numbers can be used to set the outputs.

Example:

OUT = 011 : REM Same as OUT = 3

Reading OUT will return the last value written to the digital outputs. For example:

OUT = OUT & 15

will clear output bits 4 to 7 while retaining bits 0 to 3.

Individual bits can be set by adding the bit number to the OUT keyword. For example:

OUT2 = 1

will set output 2.

Using the dot notation, it is also possible to set an output bit using a variable as follows:

a = 1

OUT.a = 0

will clear output bit 1. Note that if a lies outside the range 0 to 7, an “Out of Range” error
will occur.

RESET will set all the outputs to zero (this is equivalent to OUT = 0).

SmartMove provides over current, over temperature and short circuit protection on the
outputs. If an error occurs, the ONERROR routine will be called with an ERROR value
of 13 and ERR value of 15. The error condition can be reset using the RESET and
CANCEL command.

See also:

BOOSTOFF, BOOSTON, IN, OUT0..7, XIO, XOUT

MN1260

10-1277/98 MN1260

OUT0/O0 .. OUT7/O7

Purpose:

To set individual digital output bits.

Format:

OUT0 = <expression>

OUT1 = <expression>
OUT2 = <expression>

OUT3 = <expression>

OUT4 = <expression>

OUT5 = <expression>
OUT6 = <expression>

OUT7 = <expression>

Abbr. Read Write Command Multi-Axis Scaled Default Range

00.. ❑ ❑ 0 to 1
07

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Allows individual writing of bits to the eight bit outputs

Example:

OUT1 = 1

sets digital output number one (bit 1). The remaining 7 bits are unaffected.

RESET will set all the outputs to zero (this is equivalent to OUT = 0).

SmartMove provides over current, over temperature and short circuit protection on the
outputs. If an error occurs, the ONERROR routine will be called with an ERROR value
of 13 and ERR value of 15. The error condition can be reset using the RESET and
CANCEL command.

10-128 7/98

See also:

BOOSTOFF, BOOSTON, IN, OUT, XIO, XOUT

PAUSE

Purpose:

To pause program execution until a condition becomes true.

Format:

PAUSE <condition>

Execution is paused until the condition is true, where the condition is any valid MINT
expression. This has many uses in for example synchronizing motion or waiting for
inputs.

PAUSE I1 = 1

pause until input bit 1 equals 1

PAUSE I1

has the same effect but will respond quicker to the input.

Pause can also be used to respond to edges on inputs. For example:

PAUSE IN1

PAUSE !IN1

this will wait for a falling edge on input 1.

PAUSE POS > 300

pause until position is greater than 300

PAUSE is more commonly used to wait for the axis to become idle.

PAUSE IDLE[0,1]

This will wait for both axis 0 and axis 1 to become idle before executing the next program
statement.

PAUSE INKEY

Will wait for any key to pressed at the user terminal. Alternatively:

PAUSE IK = ‘y’

MN1260

10-1297/98 MN1260

21Abbreviation applies to MINT/3.28 only

will wait until Y is pressed at the user terminal. The statement:

PAUSE !INKEY

will flush the serial buffer.

See also:

IN, INKEY, LIMIT, MODE, POS, REPEAT..UNTIL, WHILE..ENDW

PEEK/PK

Purpose:

To read an option card address space.

Format:

v = PEEK(<expression>)

Abbr. Read Write Command Multi-Axis Scaled Default Range

PK21 ❑ – 0 to 63
0 to 67 (STE)

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

PEEK allows the reading of the controller’s option address space. The expression is any
valid MINT expression that evaluates within the range of 0 to 63 (0 to 67 for STE, 64 to
67 will read from 4 reserved Dual Port RAM locations).

Example:

PRINT PEEK(10)

This will read the option address 10 and return a byte value.

10-130 7/98MN1260

PEEK is used in conjunction with POKE and removes the need for customized software
where custom options boards are used. Contact your distributor for further details on
option boards.

When used for MINT/3.28, the address must be given in the data field of the
read data packet.

See also:

PO, POKE

PO

Purpose:

To write to an option card address space within MINT/3.28.

Abbr. Read Write Command Multi-Axis Scaled Default Range

PO ❑ – 0 to 63
0 to 67 (STE)

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

The PO keyword is functionally equivalent to the POKE keyword. It is used by
MINT/3.28 to write a value to an option address space. The data field within the write
datapacket must be of the form:

address, data

where the address is within the range of 0 to 63 (0 to 67 for STE, where 64 to 67 writes to
Dual Port RAM) and the data within the range of 0 to 255.

See also:

PEEK, POKE

10-1317/98

POFF

Purpose:

To turn the command line and INPUT prompt off.

Format:

POFF

Turns P> or C> user prompt off, useful for host computer communications. Will also turn
the INPUT prompt off.

ECHO can be used to turn off echoing from the commands line and the echoing of error
messages to the terminal.

See also:

ECHO, PON

POKE

Purpose:

To write a byte value to the option card address space.

Format:

POKE <address>,<expression>

Writes a byte value to the option board address space. The address can be any valid
MINT expression as long as its evaluates within the range of 0 to 63 (0 to 67 for STE, 64
to 67 will write to 4 reserved Dual Port RAM locations). The expression is the byte value
you wish to write, in the range of 0 to 255.

Example:

POKE 1,127

will write 127 to option address 1.

POKE is used in conjunction with PEEK and removes the need for customized software
where custom options boards are used. Contact your distributor for further details on
option boards.

See also:

PEEK

MN1260

10-132 7/98MN1260

PON

Purpose:

To turn the command line and INPUT prompt on.

Format:

PON

Turns P> or C> user prompt on. Also turn the INPUT (?) prompt on. PON is the default
on power up.

See also:

ECHO, POFF

POS/PS

Purpose:

To read the instantaneous axis position.

To set the axis position.

Format:

POS[axes] = <expression> {,<expression> ...}

v = POS[axis]

Abbr. Read Write Command Multi-Axis Scaled Default Range

PS ❑ ❑ ❑ ❑ – -8388607.0 to
8388607.0

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Returns the instantaneous axis position.

10-1337/98

Example:

MR = 100 : GO

WHILE !IDLE
? POS; : BOL

ENDW

This will print the position to the user terminal until the axis is idle.

Writing to POS will set the position to the value of the expression. Make sure the axis is
idle before setting the new position. If the axis is currently executing a move, an error
will be generated. Using POS with HOME allows you to set your own datum positions.
For example:

HOME = 1,1 : REM Datum axes
PAUSE IDLE[0,1] : REM Wait for axes to stop

POS = 100,200 : REM Set new datum positions

The ENCODER keyword can be used to provide a form of closed loop on a stepper motor.
If we assume that we have the same number of quad count to steps on the stepper motor,
the following subroutine, correction, can be used to correct for any missing steps:

< MANUAL\CORRECT.MNT

SF = 1
MA.0 = 1000 : GO.0

PAUSE IDLE.0

GOSUB correction

END

#correction

REM Read the position we should be at

finalPos = POS.0

REM Keep correcting until we get to the position

WHILE ENCODER.0 <> finalPos

MR.0 = finalPos - ENCODER.0 : GO.0
PAUSE IDLE.0

ENDW

REM Reset the position to the actual encoder position
POS.0 = ENCODER.0

RETURN

MN1260

10-134 7/98MN1260

The PRESCALE keyword can be used to scale down the encoder input, thus increasing
the effective range of the axis within its absolute limits.

See also:

FOLERR, ENCODER, FASTPOS, PRESCALE. RESET, SCALE, ZERO

PRESCALE/PR

Purpose:

To scale down the encoder input

Format:

PRESCALE[axes] = <expr> {,<expr> ...}

v = PRESCALE.axis

Abbr. Read Write Command Multi-Axis Scaled Default Range

PR ❑ ❑ ❑ 1 1 to 100

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑

The PRESCALE keyword is used to scale down the encoder input. For example, if a 1000
line encoder is used, giving 4000 counts per revolution, a PRESCALE value of 2 is
equivalent to using a 500 line encoder. The controller will now see 2000 counts per
revolution.

PRESCALE will affect both the axis position (read using the POS keyword) and the
encoder position (read using the ENCODER keyword). It has no effect on the 3 channel
encoder position (XENCODER).

If the PRESCALE value is changed, the axis speed, acceleration and servo gains must be
changed to reflect the new PRESCALE.

PRESCALE is useful where it is not always possible to change the encoder to increase the
absolute positional range of the axis.

See also:

ENCODER, POS

10-1357/98

PRINT/?

Purpose:

To display expressions and strings to the terminal.

Format:

PRINT argument list {USING <int> {,<frac>}}

Abbreviation:

?

Strings may be printed with the PRINT command delimited by double quotes.
Expressions and strings may be separated by semicolons or commas. A comma will cause
the next argument to print directly after the previous one; a semicolon will print the next
argument at the next tab position, where each tab position is at every 8 characters. PRINT
may be abbreviated by a question mark (?).

Example:

PRINT “a = “,a,” POS = “,POS[0]

or

? “a = “,a,” POS = “,POS[0]

Example 2:

LOOP : ? POS[0];POS[1];POS[2]; : BOL : ENDL

will repeatedly print the position of axes 0, 1 and 2 to the same line. This is achieved by
use of the BOL (Beginning Of Line) keyword. Note the use of semicolon to suppress line
feeding. This is especially useful when writing to the LCD display. If a carriage return if
performed on the last line of the display, the display will be cleared. Use a comma to
suppress this.

The USING parameter allows for formatted output. <int> is the number of decimal
places to print and <frac> is the number of fractional places to print. The printed number
is prefixed with zeroes where necessary.

If <int> is positive, the number will be printed without a sign. If <int> is negative, the
number will be printed with a leading + or - sign.

MN1260

10-136 7/98

Example 3:

a = -123.5

PRINT a USING -5,1

will display:

-00123.5

Example 4:

a = 123.5

PRINT a USING 5,2

will display:

00123.50

Example 5:

a = 123.5

PRINT a USING 4

will display:

0123

Fractional numbers are not rounded up.

In addition to the PRINT keyword, MINT also has the BINARY and the LINE keywords
for terminal output. The BINARY keyword is used to print 8 bit binary numbers. The
LINE keyword is used, in conjunction with the LCD display, to write to a specified line
and clearing all characters to the end of that line. LINE will replace:

LOCATE 1,2 : REM Locate to line 2
PRINT “A Message “ REM Print message and clear rest of
line

with:

LINE 2, “A Message”

LINE accepts all the parameters that PRINT uses.

See also:

BINARY, CHR, INPUT, INKEY, LINE, LOCATE

MN1260

10-1377/98

PROTECT

Purpose:

To password protect the program and configuration files.

Format:

PROTECT password

The PROTECT keyword provides password protection for the program and configuration
files. The keyword PROTECT must be placed on the first line of the program file (not the
configuration file) followed by the password. When this has been entered into the
program, any editor commands used will require the password to be entered. On issuing
an editor command, the prompt “password” is displayed requesting a password. Enter
the correct password for the operation to be carried out (note that *’s are printed to the
terminal in place of the characters pressed).

Editor commands affected by password control are:

DEL, EDIT, INS, LIST, LOAD, NEW, SAVE

Notes:

• The keyword PROTECT must be in upper case otherwise it will be ignored.

• The password is case sensitive and will accept letters, numbers, spaces and
punctuation. A password length of 20 characters is allowed.

• Only the keyword PROTECT and the password must exist on line 1 of the program.
Additional keywords such as REM cannot be placed on this line since these will
become part of the password.

• In order to gain full control of the editor without entering the password each time, the
PROTECT keyword must be removed. This can be achieved by either placing REM
before PROTECT or inserting a line at line 1 before the PROTECT keyword.

• Programs cannot be loaded and saved using cTERM with password protection in
operation. The loading and saving of array data is not affected by password
protection.

Example:

PROTECT abc
REM Program example

GOSUB init

GOSUB main

#init

...

MN1260

MN126010-138 7/98

See also:

BAUD, DEL, EDIT, INS, LIST, LOAD, NEW, PROG, SAVE

PULSE/PU

Purpose:

To set the axis to follow the pulse timer input with a given gear ratio.

Format:

PULSE[axes] = <expression> {,<expression> ...}
v = PULSE[axis]

Abbr. Read Write Command Multi-Axis Scaled Default Range

PU ❑ ❑ ❑ 0 -127.0 to 127.0

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Executes Pulse following mode allowing the axis to follow an external pulse train. Only
valid when the controller is in IDLE or PULSE mode i.e. MODE = _idle or MODE =
_pulse. The value of the expression controls the gearing and direction between the axis
and the pulse train. For example:

PULSE = 2

for every pulse in, the axis will move 4 encoder counts. This is due to the fact that the
pulse follower input will count every edge of the pulse train. As a safety feature, the axis
will ramp up to the speed of the pulse train at an acceleration set by the ACCEL keyword.

A change in the direction input will result in a change in direction on the axis, with the
axis ramping up to the new speed. If the direction input is not being used it should be tied
to ground in-case of any noise.

Only one pulse and direction input is available. However all axes can be set-up to follow
the same pulse train but with a different gear ratio and direction. For example:

PULSE = -5,2.5,-1.25

10-1397/98 MN1260

During pulse following mode, an offset can be applied to the base speed using the
OFFSET keyword. See OFFSET for more details.

If the pulse/timer input is reset for a set number of counts, i.e. an index pulse on an
encoder resets the pulse input every revolution, the WRAP keyword must be used to tell
MINT the number of counts to expect. For example:

WRAP = 2000

will inform MINT that the timer is reset every 2000 counts.

PULSE is terminated by either executing the STOP command or assigning a value of 0 to
PULSE.

Reading PULSE will return the last value assigned to it.

See section 6.5 for more detail on pulse following.

See also:

ACCEL, DECEL, FOLLOW, MODE, OFFSET, STOP, TIMER, WRAP

PULSEVEL/PV

Purpose:

To return the pulse timer velocity.

Format:

v = PULSEVEL

Abbr. Read Write Command Multi-Axis Scaled Default Range

PV ❑ – –

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

10-140 7/98MN1260

Returns the velocity of the pulse follower input in terms of counts per second. The value
returned takes no account of the scale factor set. The minimum resolution of PULSEVEL
is 500 for a LOOPTIME of 2, and 1000 for a LOOPTIME of 1.

Example:

PULSE = 1 : REM Set pulse following

LOOP
? PULSEVEL; : BOL : REM Display velocity

ENDL

See also:

PULSE, TIMER

RAMP/RP

Purpose:

To set the smoothness of the velocity profile.

Format

RAMP[axes] = <expression> {,<expression> ...}

v = RAMP[axis]

Abbr. Read Write Command Multi-Axis Scaled Default Range

RP ❑ ❑ ❑ 0 0 to 10.0

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

10-1417/98

Sets the smoothness of the velocity profile, where 0 is a trapezoidal profile, and 10 is a
very rounded profile. For interpolated and contoured moves, the ramp factor must be the
same for all axes.

Example:

RAMP = 5,5

ACCEL = 500,500
SPEED = 20,20

CIRCLER = 100,200,45 : GO

The RAMP factor only affects
positional and circular moves and has
no affect on JOG or HOME. It cannot
be changed during a positional move.

See also:

ACCEL, SPEED

READKEY/RK

Purpose:

To return the currently pressed key on the keypad.

Format:

v = READKEY

Abbreviation:

RK

READKEY will return the ASCII value of the key on the keypad that is currently pressed.
Unlike INKEY, which only reads a key once when it is pressed, READKEY will return
the key value until the key is released. If no key is pressed, READKEY will return 0.

Example:

LOOP

temp = INKEY : REM Clear the keypad buffer

IF READKEY = ‘A’ THEN JOG = 1

IF READKEY = 0 THEN JOG = 0
ENDL

MN1260

MN126010-142 7/98

This example will jog the motor while A is pressed. The motor will stop when the key is
released.

The standard keypad returns the following
ASCII as shown in the table:

Notes:

• Key presses are stored in a 128 byte
circular buffer until they are removed by
either INKEY or INPUT. READKEY
will return the key that is currently being
pressed. This key press will also be
stored in the keypad buffer and can be
cleared using INKEY as shown in the
above example.

• Like INKEY, READKEY returns the
ASCII code for the upper case value of
the key.

See also:

INKEY, INPUT, KEYS

Key Character ASCII Value

0 0 48

1 1 49

2 2 50

3 3 51

4 4 52

5 5 53

6 6 54

7 7 55

8 8 56

9 9 57

– – 45

del 8

sp space 32

– – 46

enter CR 13

F1 A 65

F2 B 66

F3 C 67

F4 D 68

F5 E 69

F6 F 70

x left U 85

x right X 88

y up V 86

y down Y 89

z down W 87

z up Z 90

10-1437/98

RELEASE

Purpose:

To clear all user variables from memory.

Format:

RELEASE

The currently defined variables are released from memory. All array values are still
maintained in non-volatile memory and will not be cleared by RELEASE. Re-executing
the DIM statements will restore the array values.

RELEASE cannot be used within a program. Variables are defined at
compile time and RELEASE will clear them at run time.

See also:

DIM, DISPLAY

REM

Purpose:

To place comments into a program file.

Format:

REM {string}

Allows remarks to be placed in a program file. All characters after the REM until the end
of line are ignored. If remarks are to be placed after a line of code, the REM should be
separated from the statement by a colon although this is not necessary. For example:

PRINT : REM this prints a blank line
PRINT REM This also prints a blank line

The colon is not necessary as a consequence of the MINT code being semi-compiled at
run time. However, to aid readability and future compatibility, the colon should be used.

MN1260

10-144 7/98

REPEAT .. UNTIL

Purpose:

To perform a loop until a condition becomes true.

Format:

REPEAT

{statements}
UNTIL <condition>

Executes the statements until the condition becomes true. In MINT any value other than 0
is defined as true and only 0 is false. A REPEAT loop can be terminated by setting the
condition after UNTIL to zero. By defining a variable, the loop could terminate for a
number of conditions.

Example:

a = _false
REPEAT

{statements}

IF POS > 10 THEN a = _true

IF IN1 THEN a = _true
UNTIL a

A repeat loop will always execute at least once. REPEAT .. UNTIL loops can be nested
up to 10 levels.

EXIT can be used to prematurely terminate the loop.

See also:

EXIT, FOR..NEXT, LOOP..ENDL, PAUSE, WHILE..ENDW

MN1260

10-1457/98 MN1260

RESET/RE

Purpose:

To clear the motion error and set the position to zero.

Format:

RESET[axes]

Abbr. Read Write Command Multi-Axis Scaled Default Range

RE ❑ ❑ – –

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Clears all errors and sets the position to zero. If the position is to be retained, use the
CANCEL keyword to clear the error only.

Note: The digital outputs are cleared with the RESET command, regardless
of which axis is selected. This is equivalent to OUT = 0.

On power up, the amplifier enable signal will keep the amplifiers disabled until a RESET
or CONFIG is issued. If this signal is used, RESET should always be placed near the
beginning of the configuration file to enable the amplifiers.

AUTO

REM Configuration file

AXES[0,1]
RESET[0,1,2]

GAIN = 2;

KVEL = 10;

...

10-146 7/98MN1260

The following parameters are reset:

Keyword Reset Value or Action

AUXDAC 0V

CONTON* Contouring is switched off

DISLIMIT Limits are enabled

ENCODER 0

FASTPOS 0

FOLERR 0

GEARD* 1

GEARN* 0

IMASK 255

MODE* 0 (idle)

OUT Outputs are cleared

POS 0

TIME 0

The keywords marked with * are also reset by the CANCEL and DISLIMIT keywords.

DEFAULT can be used to return all motion variables to their power up values.

See also:

CANCEL, CONFIG, DEFAULT, DISLIMIT, ENLIMIT, ERROR

10-1477/98

RETURN
Purpose:

To return program execution from the subroutine to the calling GOSUB.

Format:

RETURN

Returns execution of the program to the line or statement following the calling GOSUB
statement.

GOSUB label1
END
#label1

? “A Label”
RETURN

RETURN can also be used to return execution from the subroutine on a condition. For
example:

...
GOSUB label1
...
#label1

...
IF IN1 THEN RETURN : REM Return from subroutine if IN1 becomes

true
...

RETURN

See also:

GOSUB

RUN

Purpose:

To execute the program from the command line or re-execute the currently running program.

Format:

RUN

Begins program execution from the command line. The configuration file is executed first
followed by the program file. If RUN is encountered in a file (configuration or program)
during execution, only the current file is re-executed. This is useful for re-executing the
program after an error.

MN1260

10-148 7/98MN1260

Example:

#ONERROR : REM Re-execute the program on an error

RESET[0,1,2]
RUN

RETURN

Programs can be made to auto execute on power up by placing AUTO at the beginning of
the configuration file.

In order to terminate program execution, press Ctrl-E at the terminal.

See also:

AUTO, #ONERROR

SAVE

Purpose:

To save a file (program, configuration or array) from the controller memory.

Format:

SAVE <buffer>

SAVE can be used to save programs and data from the controller if cTERM is used.
SAVE is useful within a program for uploading array data from an executing program.
<buffer> corresponds to:

Buffer value Buffer

-3 Save array data to memory card if installed

-2 Save configuration file to memory card if installed

-1 Save program file to memory card if installed

1 Program buffer, no checksum

2 Configuration buffer, no checksum

3 Array data, no checksum

4 Program buffer with checksum

5 Configuration buffer with checksum

6 Array data with checksum

10-1497/98

Example:

{ statements }

IF INKEY = ‘S’ THEN GOSUB saveData
{ statements }

END

#saveData

TIME = 0

REPEAT
IF INKEY = ‘3’ THEN : ? “Ok 3”: SAVE 3

UNTIL TIME > 1000 : REM Timeout after 1000ms

RETURN

on receiving an ‘S’, the subroutine saveData will be called. If ‘3’ is received the data will
be save, otherwise the routine will time-out. This can be used with cTERM which on file
save will send down the string “SAVE” followed by “3” for array data. cTERM will then
expect the response “Ok 3” before saving the data.

Buffer values 4 to 6 should only be used with cTERM which provides a checksum to
check for data corruption. Always send “Ok 1” to “Ok 3” in acknowledgement and not
“Ok 4” to “Ok 6”.

If the memory card is installed and AUTO is present in the configuration file, the program
and config files will be copied automatically into memory. In order to save the files into
the memory card, first download them into internal memory and type the following at the
command line:

SAVE -1

SAVE -2

The upload/download routines as used within cTERM for DOS can be found on the
accompanying diskette. These are written in Turbo C but should be portable among most
C compilers. Alternatively the MINT Interface Library provides functions for Windows
for many of the popular development suites.

See also:

DIM, DISPLAY, LOAD

MN1260

10-150 7/98MN1260

SCALE/SF

Purpose:

To set all encoder/step driven variables (e.g. SPEED, POS) to user defined units.

Format:

SCALE[axes] = <expression> {,<expression> ...}

v = SCALE[axis]

Abbr. Read Write Command Multi-Axis Scaled Default Range

SF ❑ ❑ ❑ 1 1 to 3200

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

SCALE allows you to scale the encoder quadrature counts (or stepper motor steps) to your
own units as illustrated in the diagram:

All the following keywords will be scaled to the user’s units:

ACCEL, CAM, CAMA, CIRCLEA, CIRCLER, FLY, FOLERR, JOG, MASTERINC, MOVECAM,
MFOLERR, MOVEA, MOVER, OFFSET, POS, SPEED, VECTORA, VECTORR, VEL

Note that SCALE only accepts integer values. A non-integer value will be rounded down.

10-1517/98 MN1260

Example:

An XY table uses servo motors with 500 line encoders and a 4 mil pitch. With a
quadrature encoder this gives 2000 counts per revolution of the motor or 500 counts per
milli-metre. To scale the positions and speeds to milli-meters, the following could be
used:

SCALE = 500,500 : REM Scale to mm

SPEED = 30,30 : REM Speed = 30 mm/sec
ACCEL = 500,500 : REM Accel = 500 mm/sec^2

MOVEA = 100,200 : GO : REM Move to position 100,200mm

MOVER = -10,-10 : GO : REM Move relative -10,-10mm

See also:

ACCEL, CAM, CAMA, CIRCLEA, CIRCLER, FLY, FOLERR, JOG, MASTERINC,
MFOLERR, MOVEA, MOVER, PRESCALE, POS, SPEED, VECTORA, VECTORR,
VEL

SERVOC/SC

Purpose:

To restore power to the motor at the current position.

Format:

SERVOC[axes]

Abbr. Read Write Command Multi-Axis Scaled Default Range

SC ❑ ❑ – –

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑

10-152 7/98MN1260

Restore power to the motors and retain the current position. SERVOC is used in
conjunction with SERVOFF to allow manual movement to the motors while still
maintaining position. For example, moving off limit switches or teach by hand.

Example:

SERVOFF.1 : REM Turn servos off

? “Move to new position and press End”
PAUSE INKEY = ‘E’

SERVOC.1 : REM Turn servos on to new position

where pressing ‘E’will return power to the motors at the new position.

Note: The use of CANCEL, RESET, DISLIMIT and CONFIG while in
SERVOFF mode will re-enable the servo loop

See also:

CANCEL, ENABLE, RESET, SERVOFF, SERVON, TORQUE

SERVOFF/SO

Purpose:

To remove power from the motor while retaining position.

Format:

SERVOFF[axes]

Abbr. Read Write Command Multi-Axis Scaled Default Range

SO ❑ ❑ – –

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑

10-1537/98

Turns the power off to the current amplifiers allowing for manual movement of the axis.
SERVOFF will display a minus sign on the LED display and MODE will return a value of 1.

The following example shows how SERVOFF can be used to manually move off a limit
switch and then restore power using SERVOC.

SERVOFF.0

PAUSE !LIMIT : REM Wait to move off limit
SERVOC.0 : REM Restore power to current position.

Alternatively:

TORQUE = 0

PAUSE !LIMIT

STOP.0

will produce the same effect as the previous example.

Example 2:

During encoder following (FOLLOW), it may be necessary to turn the axis off that you
are following, to avoid following errors resulting in a system shut down. The axis can be
either turned off using SERVOFF or CONFIG = _off.

SERVOFF.2 : REM Servo off axis 2

REM Could use CONFIG.2 = _off

FOLLOWAXIS.0 = 2 : REM Follow axis 2

FOLLOW.0 = 2 : REM Follow at a ratio of 2:1

SERVOFF turns off the servo control loops within the controller but will not turn off the
amplifiers. When using velocity amplifiers it will be necessary to turn off the drives using
the ENABLE keyword before turning the servo control off.

ENABLE = _off

SERVOFF

The ENABLE keyword will turn all the drives off since it controls the error output signal.

Note: The use of CANCEL, RESET, DISLIMIT and CONFIG while in
SERVOFF mode will re-enable the servo loop

See also:

CANCEL, ENABLE, RESET, SERVOC, SERVON

MN1260

10-154 7/98MN1260

SERVON/SV

Purpose:

To restore power to the motor.

Format:

SERVON[axes]

Abbr. Read Write Command Multi-Axis Scaled Default Range

SV ❑ ❑ – –

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑

Restores power to the motors. The axis will go back to the position it was it when
SERVOFF was issued. If the axis has been moved the motor may well jump or a
following error will be issued. In such a case use SERVOC to restore power at the current
position.

Note: The use of CANCEL, RESET, DISLIMIT and CONFIG while in
SERVOFF mode will re-enable the servo loop

See also:

CANCEL, ENABLE, RESET, SERVOC, SERVON

10-1557/98 MN1260

SIN

Format:

v = SIN(<angle>)

Return the sine of the angle, where the <angle> is in the range of 0 to 360 and can be any
valid MINT expression. The return value will be in the range of -1000 to 1000
representing -1 to 1.

Example:

? SIN(245)

will print -906 to the terminal.

SIN has no inverse function

See also:

COS, TAN

SPEED/SP

Purpose:

To set the desired slew speed for positional moves.

Format:

SPEED[axes] = <expression> {,<expression> ...}

v = SPEED[axis]

Abbr. Read Write Command Multi-Axis Scaled Default Range

SP ❑ ❑ ❑ ❑ 40000 (servo) 0 to
1000 (step) 5300000.0

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

10-156 7/98

Sets the desired slew speed for positional moves. This variable can be changed during a
positional move and the axis will control acceleration to the new SPEED at an
acceleration defined by the ACCEL keyword. Deceleration is controlled with the DECEL
keyword.

Example:

SCALE = 2000 : REM Scale to revs

SPEED = 20 : REM Speed = 20 revs/sec
MA = 10 : GO : REM Move to position 10 revs

will move to absolute position 10 revs at a speed of 20 revs/sec.

In an interpolated move the SPEED will determine the SPEED on the vector of
movement. In order for correct motion, all axes performing interpolation must have the
same SPEED specified before the move is executed.

Example:

ACCEL = 2500,2500
RAMP = 5,5

SPEED = 100,100

CIRCLEA = 100,200,270 : GO

See also:

ACCEL, ACCELTIME, AXISCON, CAM, CIRCLEA, CIRCLER, DECEL, FLY,
FOLLOWAXIS, INCA, INCR, MOVEA, MOVER, OFFSET, SCALE, VECTORA,
VECTORR

MN1260

10-1577/98 MN1260

STOP/ST

Purpose:

To perform a controlled stop during motion.

Format:

STOP[axes]

Abbr. Read Write Command Multi-Axis Scaled Default Range

ST ❑ ❑ – –

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Stops motion with controlled deceleration set by the DECEL keyword. Primary use is to
terminate jog and torque modes before entering a positional mode.

Example 1:

JOG.1 = 1000 : REM Jog motor

PAUSE IN1 : REM Wait for input
STOP.1 : REM Stop motion

PAUSE IDLE.1 : REM Wait for stop

MOVER.1 = 100 : GO.1 : REM Perform positional move

Example 2:

#IN0

STOP[0,1] : REM Stop motion on axes 0 and 1

PAUSE IDLE[0,1]

RETURN

will stop motion on axes 0 and 1 on seeing an interrupt on digital input 0.

Stop will perform the following action on the motion keywords:

10-158 7/98MN1260

Keyword Action

CAM/CAMA Crash stop

CIRCLEA/CIRCLER Decelerate at rate defined by the DECEL keyword

FLY Crash stop

FOLLOW Crash stop or decelerate over the MASTERINC/2 distance.

GEARN/GEARD Decelerate if a MASTERINC is defined otherwise crash
stop

JOG Decelerate at rate defined by the DECEL keyword

MOVEA/MOVER Decelerate at rate defined by the DECEL keyword

MOVECAM Crash stop

PULSE Decelerate at rate defined by the DECEL keyword

VECTORA/VECTORR Decelerate at rate defined by the DECEL keyword

See also:

ABORT, ACCEL, DECEL, RAMP, STOPMODE, STOPSW, #STOP

STOPMODE/SM

Purpose:

To allow the stop input to cancel the current move in progress

Format:

STOPMODE[axes] = <expr> {,<expr> ...}
v = STOPMODE.axis

Abbr. Read Write Command Multi-Axis Scaled Default Range

SM ❑ ❑ ❑ 1 1-2

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SMM/1 SMM/2 SMM/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

10-1597/98 MN1260

The STOPMODE keyword is used to configure the stop input to act as a CANCEL
command on the current move in progress.

STOPMODE.1 = 2

will configure axis 1 to perform a CANCEL operation if the stop input is activated.

STOPMODE.1 = 1

will revert axis 1 to normal operation on the stop input, ie decelerate to a stop.

See also:

CANCEL, STOP, #STOP

STOPSW/SS

Purpose:

To return the value of the stop input.

Format:

v = STOPSW[axes]

Abbr. Read Write Command Multi-Axis Scaled Default Range

SS ❑ – –

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Read the status of the stop input. This is useful for pausing program execution in an
STOP subroutine.

#STOP

PAUSE !STOPSW

RETURN
See also:

PAUSE, #STOP, STOPMODE

10-160 7/98MN1260

TAN

Format:

TAN(<angle>)

Return the tangent of the angle, where the <angle> is in the range of 0 to 360 and can be
any valid MINT expression. The return value will be in the range of -1000000 to 1000000
with the exception of TAN 90 which is represented by 8000000.

Examples:

TAN(45) = 1000
TAN(80) = 5622

TAN has no inverse function

See also:

COS, SIN

TERM/TM

Purpose:

To control serial output to the serial port and the keypad/display.

Format:

TERM = <expression>

Abbr. Read Write Command Multi-Axis Scaled Default Range

TM ❑ ❑ 3 1 to 7

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

10-1617/98 MN1260

TERM defines where the terminal output is directed to. Terminal output refers to the
following keywords:

BEEP, BINARY, BOL, CLS, INPUT, LINE, LOCATE, PRINT

TERM accepts one of the following values:

Value Constant Terminal Output

1 _lcd LCD Display only

2 _serial Serial port only

3 _both LCD and Serial port

+4 VT52 compatibility

For Example:

TERM = _lcd

will direct all terminal I/O to the LCD display.

Should a program error occur, MINT will automatically set terminal output to both the
serial port and LCD display.

See also:

BAUD, BEEP, BINARY, BOL, CLS, INPUT, LINE, LOCATE, PRINT

10-162 7/98MN1260

TIME/TE

Purpose:

To function as a user timer.

Format:

TIME = <expression>

v = TIME

Abbr. Read Write Command Multi-Axis Scaled Default Range

TE ❑ ❑ – 2 to 65535

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Returns the number of milli-seconds elapsed since TIME was last written to or the last
RESET command was issued. TIME can be useful for timing moves etc. For example:

TIME = 0 : REM Reset TIME

MOVER = 100 : GO : REM Setup a move and execute it

PAUSE IDLE : REM Wait for move to stop
? TIME : REM Print time for move to complete

Notes:

TIME increments in values of 2 if LOOPTIME is set to 2. It increments in values of
1 if LOOPTIME is set to 1.

TIME will wrap round to zero after 65536 loop closure times: 131 or 65 seconds.

See also:

LOOPTIME, WAIT

10-1637/98 MN1260

TIMER/TI

Purpose:

To the return the value of the external 16 bit timer (pulse input timer).

Format:

v = TIMER

Abbr. Read Write Command Multi-Axis Scaled Default Range

TI ❑ – 0 to 65535

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Read back the timer input value (the pulse follower input) in the range of 0 to 65535.

Consider the example of a master encoder connected to the pulse/timer input. If the index
pulse is used to reset the counter every revolution and the encoder has 1000 pulses per rev,
TIMER will return a value in the region of 0 to 1999. This can be used to determine the
angular position of the master encoder. The WRAP keyword must be used to inform
MINT that the counter is reset every 2000 counts i.e.

WRAP = 2000

Note that the timer input will read every edge and not every pulse of the input train.

See also:

OFFSET, PULSE, WRAP

10-164 7/98MN1260

TORQUE/TQ
Purpose:

To execute torque control; constant current mode to the amplifier.

Format:

TORQUE[axes] = <expression> {,<expression> ...}

v = TORQUE[axis]

Abbr. Read Write Command Multi-Axis Scaled Default Range

TQ ❑ ❑ ❑ – -100.0 to 100.0

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑

Executes torque control where +/-100 represents the peak current from the amplifier
(100%). The value is the percentage of peak current, with the sign giving direction. The
peak value of TORQUE will be determined by the current limit, CURRLIMIT. TORQUE
is terminated by executing STOP.

Torque mode can be set up at any time. For example:

MOVEA.0 = 100 : GO.0

PAUSE DEMAND.0 >= 50

TQ.0 = 50

Example:

TQ = 50

Apply 50% torque or +5V

TQ = 0

0% torque or 0V. This has the same function as the SERVOFF command.

For velocity controlled drives, where the motor speed is proportional to the analog input
voltage, TORQUE is useful for setting an open loop speed demand especially during
commissioning.

See also:

CURRLIMIT, DAC, DEMAND, MODE, SERVOFF, STOP

10-1657/98 MN1260

TRIGGER/TG

Purpose:

To trigger a motion on a digital input.

Format:

TRIGGER[axes] = <channel> {,<channel>...}

v = TRIGGER.axis

Abbr. Read Write Command Multi-Axis Scaled Default Range

TG ❑ ❑ ❑ -1 -1 to 8

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SMM/1 SMM/2 SMM/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

The TRIGGER keyword can be used to trigger motion on a digital input (IN) or the fast
interrupt by passing the trigger channel to the TRIGGER keyword:

Value Function

-1 Cancels the trigger and executes the pending move

0 .. 7 Triggers a move off one of the 8 digital inputs

8 Triggers the move off the fast interrupt.

On seeing the falling edge of the input, the move is executed.

TRIGGER = 1

MOVER = 100
GO

is functionally equivalent to the following interrupt routine:

#in1

MOVER = 100

GO
RETURN

10-166 7/98

Using the TRIGGER keyword however, guarantees that the move will begin execution
with 2ms.

The digital input channel (0 to 7) is passed to TRIGGER to specify which input starts the
move. Once a move has been triggered, it must be re-triggered using the TRIGGER
command. For example:

TRIGGER = 1

MOVER = 100
GO

MOVER = 200

GO

The first GO will wait for the trigger signal, the second GO will execute immediately.

Triggering can be applied to the following move types:

• CAM, CAMA

• FLY

• FOLLOW

• GEARN/GEARD

• JOG

• MOVEA, MOVER (GO must also be executed)

• OFFSET

• PULSE

• VECTORA, VECTORR (GO must also be executed)

If a slaved move (CAM, FLY, FOLLOW, GEARN/GEARD) is triggered off the fast
interrupt where the master input is one of the 3 internal axes (FOLLOWAXIS = 0,1 or 2),
the position of the master will be recorded. The recorded master position will be used to
calculate the slave position allowing for accurate registration to the fast interrupt.

The triggered move can be cleared and executed by setting TRIGGER to -1. For example:

TRIGGER = 1,1

MOVER = 100,200 :GO

TIME = 0

PAUSE TIME > 100 OR TRIGGER = 0
TRIGGER = -1,-1

will trigger 2 moves on input 1. If the trigger does not come within 100 milli-seconds, the
move will be triggered in software.

MN1260

10-1677/98

Reading TRIGGER will return the move type that is currently waiting for a trigger input.
If no move is waiting, TRIGGER will return 0 (see MODE keyword for details of move
types).

IMASK can be used to mask out the triggered move. IPEND can be used to clear a
triggered move. See section 6.9 for more detail on TRIGGER>

Care must be taken to ensure a move has been triggered and executed before
another triggered move is setup. This can be tested by reading TRIGGER

which returns 0 if no moves are waiting for a trigger signal.

Special Case for FLY:

Flying shears must be treated slightly different to ensure correct motion.

MASTERINC = b

TRIGGER = 1
FLY = 4096 : GO

PAUSE !TRIGGER : REM Wait for trigger to start

MASTERINC = b

FLY = 8192 : GO

Note the use of PAUSE !TRIGGER. Without this statement, the flying shear will not be
triggered correctly.

See also:

INx, #INx, IMASK, IPEND

TROFF

Purpose:

To turn program trace off.

Format:

TROFF

Trace program execution off. See TRON for details of tracing program execution.

See also:

TRON

MN1260

10-168 7/98

TRON

Purpose:

To turn program trace on.

Format:

TRON

Trace program execution on. To aid program debugging, TRON will print each line
number of the program as it is executed. The line numbers are enclosed in square
brackets, prefixed by ‘C’ for the configuration file and ‘P’ for the program file. TRON and
TROFF can be used within a program.

Example:

TRON
FOR a = 1 to 5

PRINT a

NEXT

TROFF

On execution the following will be displayed:

[C 1]

[P 1] [P 2] [P 3] 1
[P 4] [P 3] 2

[P 4] [P 3] 3

[P 4] [P 3] 4

[P 4] [P 3] 5

[P 5]
[P 6]

Using cTERM for DOS, the displayed output can be saved to a file for later inspection.
Press F4 to save, select “other” and enter the filename. All displayed output will be saved
to file. Press Esc to save the file. The file can now be inspected using an editor.

See also:

TROFF

MN1260

10-1697/98 MN1260

VECTORA/VA

Purpose:

To perform an interpolated vector move on two or more axes with absolute co-ordinates.

Format:

VECTORA[axis0,axis1 {,axis2}] = <position0>,<position1> {,<position2>}

Abbr. Read Write Command Multi-Axis Scaled Default Range

VA ❑ ❑ ❑ -8388607.0 to
8388607.0

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Absolute vector move: Two/three axis linear interpolated move on two/three orthogonal
axes specified in absolute co-ordinates. At least two axes must be specified. In this mode
the axis speed, acceleration and ramp apply not to the individual axis but to the vector
along which movement occurs. The command will be accepted during a current positional
move but will not be executed until the next GO statement.

Although vector moves can be mixed between stepper and servo motors, it is desirable
that the step count on the stepper is the same as the encoder count on the servo.

The desired end position of the vector move can be read using either the
MOVEA or MOVER keywords.

Example:

VECTORA = 100,200 : GO : ? MA[0];MA[1];

will display:

100 200

10-170 7/98MN1260

Example 2:

SPEED = 20,20

CONTON

VECTORA = 80,20 : GO

CIRCLER = 20,-20,-90 : GO
PAUSE IDLE[0,1] : REM Wait for axes to stop before

CONTOFF : REM Turning contouring off

Assuming a starting position of 40,-20, this
executes a straight line segment on axes 0 and 1
followed by a circular arc (circles are not
supported in Process MINT) of 90 degrees at
constant speed of 20. Note that it is imperative
to set the axis speeds and accelerations to the
same value before executing the move since
these refer to speeds and accelerations along the
vector of motion.

See also:

ACCEL, CIRCLEA, CIRCLER, CONTON, CONTOFF, MOVEA, MOVER, RAMP,
SPEED, TRIGGER, VECTORR

VECTORR/VR

Purpose:

To perform an interpolated vector move on two or more axes with relative co-ordinates.

Format:

VECTORR[axis0,axis1 {,axis2}] = <position0>,<position1> {,<position2>}

Abbr. Read Write Command Multi-Axis Scaled Default Range

VR ❑ ❑ ❑ – -8388607.0 to
8388607.0

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

10-1717/98

Relative vector move: Two/three axis linear interpolated move on two/three orthogonal
axes specified in relative co-ordinates. At least two axes must be specified. In this mode
the axis speed, acceleration and ramp apply not to the individual axis but to the vector
along which movement occurs. The command will be accepted during a current positional
move but will not be executed until the next GO statement.

Although vector moves can be mixed between stepper and servo motors, it is desirable
that the step count on the stepper is the same as the encoder count on the servo.

The desired end position of the vector move can be read using either the
MOVEA or MOVER keywords.

Example:

VECTORA[1,2] = 100,100 : GO
VECTORR[1,2] = 100,200 : GO

? MA[1];MA[2];

will display:

200 300

Example 2:

SPEED = 20,20

CONTON

VECTORR = 40,40 : GO
CIRCLEA = 100,0,-90 : GO

PAUSE IDLE[0,1] : REM Wait for axes to stop before

CONTOFF : REM Turning contouring off

Assuming a starting position of 40,-20, this executes a straight line segment on axes 0 and
1 followed by a circular arc (circles are not supported in Process MINT) of 90 degrees at
constant speed of 20. Note that it is imperative to set the axis speeds and accelerations to
the same value before executing the move since these refer to speeds and accelerations
along the vector of motion.

See also:

ACCEL, CIRCLEA, CIRCLER, CONTON, CONTOFF, MOVEA, MOVER, RAMP,
SPEED, TRIGGER, VECTORA

MN1260

10-172 7/98MN1260

VEL/VL

Purpose:

To return the instantaneous axis velocity.

Format:

v = VEL[axis]

Abbr. Read Write Command Multi-Axis Scaled Default Range

VL ❑ ❑ ❑ ❑ 0 0 to 32000

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Returns instantaneous axis velocity in counts/second where the sign indicates direction.
VEL is applicable in all modes of motion. For a scale factor of 1, the minimum resolution
of VEL is 500 for a LOOPTIME of 2 and 1000 for a LOOPTIME of 1.

VEL is dependent on the scale factor (SCALE) on read back only.

Using the AUX keyword, the velocity can be directed to a DAC output to assist with
system tuning using an oscilloscope.

Writing to VEL sets the IDLE velocity. This is the velocity where MINT thinks the motor
is at rest. VEL is defined in quadrature counter per servo cycle and is defaulted to zero.
A value other than zero should be set if the motor suffers a lot of ‘jitter’ which may result
in it never settling to zero velocity.

Example:

VEL = 1 : REM 1 quad count/per servo loop = 500 counts/sec

MOVEA = 100 : GO

PAUSE IDLE

See the IDLE keyword for further details.

See also:

AUX, JOG, LOOPTIME. PRESCALE, PULSEVEL, SPEED

10-1737/98 MN1260

VER

Purpose:

To display the current MINT version number.

Format:

VER

Display the version number of the MINT software.

The version number of the software should be quoted in all correspondence,
with your distributor, regarding queries with MINT.

VN

Purpose:

To return the firmware version number in a MINT/3.28 data packet

Abbr. Read Write Command Multi-Axis Scaled Default Range

VN ❑ – –

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

The VN keyword returns the MINT/3.28 firmware version number in the data field of a
MINT/3.28 data packet. Note that the data returned is a string containing alpha-numeric
characters.

10-174 7/98MN1260

WAIT/WT

Purpose:

To halt program execution for a given number of milli-seconds.

Format:

WAIT = <expr>

Abbr. Read Write Command Multi-Axis Scaled Default Range

WT ❑ – 2 to 65535

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Program execution is suspended for the number of milliseconds specified by <expr>.
WAIT can be interrupted by a MINT interrupt.

Example:

OUT1 = _on : REM Turn output on

WAIT = 250 : REM Wait 1/4 second

OUT1 = _off : REM Turn output off

will turn output 1 on which may be activating a solenoid, wait 1/4 second for the solenoid
to settle, then turn if off.

See also:

TIME

10-1757/98

WHILE .. ENDW

Purpose:

To perform a loop while a condition is true.

Format:

WHILE <condition>

{statements}
ENDW

A WHILE will loop until the <condition> after the WHILE becomes false. Unlike a
REPEAT loop which will execute at least once, a WHILE loop will only execute if the
<condition> is true. A WHILE loop must be terminated with an ENDW (end while).

Example:

WHILE _true

{statements}

ENDW

while loops are useful for looping indefinitely (see also LOOP), for instance:

WHILE !IN7

JOG = IN
ENDW

loops round until input 7 is set, reading the digital inputs and jogging the motor at a speed
set by the binary value of these inputs.

WHILE loops may be nested up to 10 levels.

EXIT can be used to prematurely terminate the loop.

See also:

EXIT, FOR..NEXT, LOOP..ENDL, PAUSE, REPEAT..UNTIL

MN1260

10-176 7/98MN1260

WRAP/WR

Purpose:

To instruct MINT when the external (pulse follower) timer is reset.

Format:

WRAP = <expression>

v = WRAP

Abbr. Read Write Command Multi-Axis Scaled Default Range

WR ❑ ❑ 0 0 to 32767

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

In pulse following mode, if an index pulse, from a master encoder, is used to reset the
timer input, the number of pulses per turn must be set by the WRAP keyword. This
ensures that MINT can take into account the timer being reset. Assigning a value of 0 will
disable the wrap feature.

Example:

WRAP = 2000
will inform MINT that the timer input is reset every 2000 counts.

See also:

OFFSET, PULSE, TIMER

10-1777/98 MN1260

22Not standard. Cannot be used in conjunction with the 3rd Axis Servo Board (ES/06)

XENCODER/XE

Purpose:

To read back the position of the encoder on the three channel encoder interface board.

Format:

XENCODER[axes] = <expr> {,<expr> ...}

v = XENCODER[axis]

Abbr. Read Write Command Multi-Axis Scaled Default Range

XE ❑ ❑ ❑ – -8388607 to
8388607

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SMM/1 SMM/2 SMM/3 SST/3 ESTE/D ESTE/S

❑22 ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑22 ❑

The operating firmware for the 3 channel encoder interface board is supported as standard
with esMINT v2.65 and above (denoted by /X on the version number) on most controllers.
In order to use the XENCODER keyword, the 3 channel encoder board must be switched
on using the AXISCON keyword as follows:

AXISCON.1 = AXISCON.1 | 010

This will turn on the external encoder for axis 1. Note the use of a binary number and
bitwise OR to retain bit settings on AXISCON.

The use of the XENCODER keyword has been further enhanced as follows:

The XENCODER value can be written to. This allows the 3 channel encoder
interface board to be used for positional verification on a stepper system.

The 3 channel encoder board can be used to provide a master reference to cam
profiles, flying shears and software gearboxes. The source of the master input is given
using the FOLLOWAXIS keyword:

10-178 7/98MN1260

FOLLOWAXIS Source

-2 Follow the pulse timer input. Now applies to the FOLLOW
keyword

-1 Follow a constant base speed set by the SPEED keyword

0 Follow axis 0

1 Follow axis 1

2 Follow axis 2

3 Follow external encoder channel 0

4 Follow external encoder channel 1

5 Follow external encoder channel 2

Notes:

SmartSystem/1 and SmartMove/1 do not support the three channel encoder board.
Instead, use the additional master encoder input provided with the controller. This is
read using POS.1.

EuroSystem does not support the three channel encoder board as standard. Support
can be supplied by on request if the 3rd axis servo board (ES/O6) is not required.

The velocity of the encoder channel cannot be read.

The XENCODER position is not latched during a fast interrupt.

The value is returned in quadrature counts and is not scaled by the SCALE keyword.

Example:

The 3 channel encoder board is used as a position reference for an open loop stepper
system. Assume a 1:1 relationship between the step rate and encoder counts.

MOVEA = 100 : GO[0]

PAUSE IDLE

finalPos = POS

WHILE POS <> XENCODER
MOVER = finalPos = XENCODER : GO

PAUSE IDLE

ENDW

See also:

AXISCON, CAM, CAMA, ENCODER, FLY, FOLLOW, FOLLOWAXIS, POS

10-1797/98 MN1260

23The axis number references the I/O bank

XIO/XI
XIO0..7

For use with 24 bit expanded I/O option board only

Purpose:

To read and write to the 24 bit expanded I/O option board.

Format:

XIO[bank] = <expression> {,<expression> ...}

v = XIO[bank]

Abbr. Read Write Command Multi-Axis Scaled Default Range

XI ❑ ❑ ❑ 23 – 0 to 255
XX 0 to 1

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

24bit I/O keywords feature as standard in MINT for use with the 24 bit I/O option board.
The 24 bits of I/O are treated as 3 banks of 8 and are accessed through the XIO keyword
(standing for eXpanded I/O). Each bank is on an individual axis. For example:

XIO.1 = 1: REM Output to bank 1 (bit 8)

? XIO.2 : REM Read inputs on Bank 2

X2.0 = 0 : REM Clear bit 2 of bank 0

Reading XIO will return the input value. Writing to XIO will write out to the outputs.
Each individual bit can be addressed by appending the bit number to the XIO keyword.
For example XIO2/X2. Note that X2 is the abbreviated keyword for XIO2.

10-180 7/98MN1260

I/O Bit Keyword Bank

0 XIO0[0] 0

1 XIO1[0] 0

2 XIO2[0] 0

3 XIO3[0] 0

4 XIO4[0] 0

5 XIO5[0] 0

6 XIO6[0] 0

7 XIO7[0] 0

8 XIO0[1] 1

9 XIO1[1] 1

10 XIO2[1] 1

11 XIO3[1] 1

12 XIO4[1] 1

13 XIO5[1] 1

14 XIO6[1] 1

15 XIO7[1] 1

16 XIO0[2] 2

17 XIO1[2] 2

18 XIO2[2] 2

19 XIO3[2] 2

20 XIO4[2] 2

21 XIO5[2] 2

22 XIO6[2] 2

23 XIO7[2] 2

SmartMove I/O expansion is via CAN bus

See also:

IN, OUT

10-1817/98 MN1260

24The axis number references the I/O bank

XOUT/XO

For use with 24 bit expanded I/O option board only

Format:

v = XOUT[bank]

Abbr. Read Write Command Multi-Axis Scaled Default Range

XO ❑ ❑ 24 – 0 to 255

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

The expanded output value can now be read back as a byte value. This can be used for
setting outputs without affecting others.

Example:

XIO = XOUT & 011110000

turn expanded output bits 0 to 3 off without affecting bits 4 to 7.

Notes:

There are no keywords for reading back individual bit values.

XOUT cannot be written to. XIO must be used for this function.

SmartMove I/O expansion is via CAN bus

See also:

OUT, XOUT

10-182 7/98MN1260

ZERO/ZR

Purpose:

To set the present axis position to zero.

Format:

ZERO[axes]

Abbr. Read Write Command Multi-Axis Scaled Default Range

ZR ❑ ❑ – –

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Defines the present axis position to be the zero position.

Example:

MA.2 = 200 : GO.2

PAUSE IDLE.2

ZERO.2

moves to absolute position 200 and resets the position to zero when the axis comes to rest.

To define a new position other than zero, use the POS keyword. For example:

POS.2 = 100

will set a position of 100 units.

See also:

POS, RESET

10-1837/98 MN1260

ZZ

Purpose:

To return the position for all three axes and I/O information in a MINT/3.28 datapacket. .

Format:

ZZ

Abbr. Read Write Command Multi-Axis Scaled Default Range

ZZ ❑ – –

Firmware Version Motor Type

Process MINT Interpolation MINT/3.28 Servo Stepper

❑ ❑ ❑

Controller

ES/D ES/S ES/M3 SMS/1 SMS/2 SMS/3 SST/3 ESTE/D ESTE/S

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Reading ZZ will return the following keyword values as comma separated.

POS[0], POS[1], POS[2], IDLE[0], IDLE[1], IDLE[2], MP[0], MP[1],
MP[2], IN, STOPSW, ANALOGUE1, ANALOGUE2, XIO[0], XIO[1], XIO[2]

as abbreviated or MINT/3.28 keywords, this becomes:

PS[0], PS[1], PS[2], ID[0], ID[1], ID[2], MP[0], MP[2], IN, SS, A1, A2, XI[0],
XI[1], XI[2]

Due to the size of the return datapacket, it is important that the read buffer is large enough
to handle the data.

See also:

ANALOGUEx, IDLE, MP, POS, STOPSW, XIO

10-184 7/98MN1260

11-17/98 MN1260

11. Error Messages
All error messages begin with the syntax:

ERROR:

This may be of use when operating the controller as a slave to a host computer - the host
need only check for the word ERROR: to detect a card error. The command LASTERR
can be used to display the last error message that caused program termination.

11.1 General Error Messages

Syntax error

Invalid character(s) or syntax has been found on a line.

Example:

GAIN = 12*

A syntax error will also occur if a MINT keyword is used in a DIM statement. For
example

DIM a1(100)

The variable a1 is the abbreviation for ANALOGUE1

Too many levels of nesting/Stack Overflow

The total level of nesting has exceeded the maximum allowed in MINT. Refer to the table
below for the maximum levels of nesting.

MINT Structure Max Nesting Level

IF..DO 30

FOR 8

GOSUB 20

LOOP 10

REPEAT 10

WHILE 10

Combined 30

No expression

There is an assignment but no expression.

11-2 7/98

Example:

avar =

Invalid Command

An unknown command is found. MINT immediately assumes it is a variable, or the
program has encountered an ENDW or UNTIL statement without a WHILE/REPEAT.

Undefined Variables

A variable has been encountered that has not been declared or a variable has been used as
a command. Use the DISPLAY command to list all the currently defined variables.

Too many variables

The total number of variables defined exceeds the total allowed (50 maximum). It may be
that variables have been declared in the immediate (user prompt) mode, that are not used
in the program. Use the RELEASE command to release all currently defined variables
from memory or re-define some variables.

Invalid Index

An index has been used in an array variable that is out of range. Example:

DIM a(10)

a(11) = 12 : REM Invalid index#

The index must be in the range of 1 to the maximum number of elements defined.

Out of memory

This can occur for the following reasons:

• There is not enough memory to store the compiled code.

• Too many array variables have been declared given the available memory.

• There is not enough room to insert a line of code into the current buffer.

• If you are using REM statements in your source file, remove some of them and re-
execute the program. Alternatively, if arrays have been defined, reduce the number of
array elements.

Line too long

A line within the program or configuration file exceeds 127 characters in length. This
applies to memory expansion and will occur during compilation.

MN1260

11-37/98

No Memory Card

An attempt was made to read or write to the memory card when no memory card exists.
LOAD, SAVE and OFFLINE arrays can produce this error message. If the write protect
switch is on, a read or write from an OFFLINE array will produce a “No Memory Card”
message.

11.2 Subroutine Errors

Too many labels

Too many subroutines have been defined (40 maximum).

Invalid label

This can occur for the following reasons:

• A duplicate subroutine (label) has been defined. Remember that only the first ten
characters of a name are significant, therefore “subroutine_1” and “subroutine_2” are
the same.

• A subroutine has been called that does not exist. This error will occur at compile
time.

• The label name is neither a number or a valid variable name.

RETURN w/o GOSUB

A RETURN statement has been found when no GOSUB was called.

11.3 Conditional Statement Errors

THEN or DO expected

An IF statement has been entered without a THEN or DO.

ELSE/ENDIF w/o IF DO

An ELSE or ENDIF statement has been found without an IF DO statement.

Example:

IF a = 10
WHILE true

<statements>

ELSE <— Error

<statements>
ENDIF

MN1260

11-4 7/98

11.4 Loop Structure Errors

TO expected

A FOR loop has been found with no TO.

NEXT w/o FOR

A NEXT has been found without a respective FOR.

ENDW w/o WHILE

An ENDW statement has been found without a respective WHILE.

UNTIL w/o REPEAT

An UNTIL statement has been found without a respective REPEAT.

Incorrect loop terminator

A loop or block structure does not have an associated closing keyword. For example,
LOOP was found with no ENDL.

11.5 Motion Variable/Command Errors

Write only

An expression contains a read of a write only variable or command

Example:

a = FLY

Read only or Command

An attempt has been made to write to a read only variable or read/write to a command.
Example:

A1 = 10

a = STOP

Missing parameter

A system command declaration is missing an axis in the expression.

Examples:

GAIN[1] = 10,20

VR[0,1] = ,100

In the first example, no axis number has been given for the value 20. In the second
example, VR (vector move) requires at least 2 parameters.

MN1260

11-57/98

Card Aborted

The card is aborted when a motion keyword is executed. Use RESET or CANCEL to
clear the error.

Limit Error

Limit error on axis when a motion keyword is executed. Use RESET or CANCEL to
clear the error.

Following Error

Following error on axis when a motion keyword is executed. Use RESET or CANCEL to
clear the error.

Invalid mode

The axis has not been set up for the correct motor type when the motion keyword is
executed. For example:

CONFIG = _stepper

FREQ = 200

This will give an Invalid Mode error since the axis must be set-up as a servo motor before
you can write to the frequency generator.

Out of range

A system variable has been assigned a value that is out of its range. Remember that the
valid numerical ranges for SPEEDs, accelerations and positions vary depending on the
SCALE keyword.

Motion in progress

An assignment to a motion variable or command was encountered when motion was in
progress. Some motion variables or commands can only be executed when the axis is idle
or only when specific modes of motion are being used. See 11 for details of each
keyword.

Example:

ACCEL = value

JOG = value
are both invalid during a positional move.

MN1260

11-6 7/98

Example 2:

AXES[0,1]

JOG[1] = 1000
MOVEA[0] = 10 : GO

results in a motion in progress error since GO will try and begin motion on axes 0 and 1.
The following will cure the problem:

AXES[0,1]

JOG[1] = 1000

MOVEA[0] = 10 : GO[0] : REM Explicit axis reference

Servo off

A move was attempted when the servo amplifier had been disabled in software with the
SERVOFF command. Execute SERVON or SERVOC to turn servo power on.

Invalid axis

An axis number was specified that was not a variable or number. Array variables or
expressions cannot be used as axis numbers. Vector and circular moves require at least 2
axes. An invalid axis error will occur if this is not the case.

Examples:

VR[0] = 100
SF[a+1] = 1000

Output Error

Applies only to SmartMove. One or more of the digital outputs has gone into error. This
can be result of: over current; over temperature or short circuit. Check the wiring and
clear the error using RESET.

MN1260

12-17/98

12. MINT Host Computer Communications
In many applications a MINT program running on the controller performs a local control
function, while a supervisory ‘host computer’ controls the overall system. There is usually
a requirement for data interchange with the host computer. MINT protected
communications is an enhancement to the MINT language for systems where secure data
interchange is required.

Connection between cards is normally via an RS485 multi-drop serial link. The system is
set-up as a master/slave configuration, where the host computer acts as the master and the
controller cards are the slaves. The host computer can talk to only one slave at any one
time and must ensure that it does not transmit data to another slave before receiving a
reply from the previous slave, otherwise there may be contention.

The protected communications routines allow interchange of data between host computer
and MINT via an array variable COMMS, which is 99 locations in length. The command
COMMSON is placed at the top of the MINT program to activate protected
communications.

The following simple example will jog the motor at a speed defined by comms location 1
which is transmitted to the controller from the host. At the same time , the host can read
the position of the moor by reading comms location 2.

MN1260

12-2 7/98

Example:

COMMSON

comms(1) = 0
LOOP

JOG.0 = comms(1)

comms(2) = POS.0

ENDL

The protocol is based on ANSI x3.28 with minor modifications.

The end of the section gives details of some library routines for the IBM PC written in
Turbo C and QBasic as supplied with MS-DOS 5.0. The routines can be found on the
accompanying diskette in the ‘comms’ directory. Alternatively, the MINT Interface
Library can be purchased which provides the necessary Windows libraries for 3.1, 95 and
NT, compatible with most of the common programming development tools.

12.1 Activating Protected Communications
The protected protocol is activated by placing the COMMSON keyword at the top of the
program file. This instructs MINT that all incoming data is used to make up datapackets,
and as such Ctrl-E will be ignored. The communications protocol can be aborted by
sending a special data packet. Ctrl-E can then be used to abort program execution.

COMMSON must be placed before any other DIM statement since it automatically
defines the array, COMMS which is used for data transfer.

Example:

COMMSON
DIM a(100)

DIM b(100)

is valid, however:

DIM a(100)
DIM b(100)

COMMSON

is invalid. The array variable a, will share the same data area as the array variable
COMMS.

Ideally, COMMSON should be placed in the configuration file just after the AUTO
keyword. This reduces the chance of data packets resulting in program termination when
the controller is powering up.

MN1260

12-37/98

Once COMMSON has been issued, MINT will now be ready to receive and process data
packets. The data packet structures are described in the following sections.

The COMMSOFF keyword is used to turn protected communications off and can be used
in conjunction with COMMSON to turn protected communications on and off. Once
COMMSON has been used once to define the comms array, any further use will turn the
communication protocol on.

12.2 Use of the COMMS variable
COMMS looks like an array variable of dimension 99. COMMS differs from the normal
MINT array variables in that there is no need to define it with a DIM statement since it is
automatically defined with the COMMSON keyword. The contents of the COMMS array
are preserved during power off.

Use of COMMS is very simple. For instance, consider the following wire winding
application, where a drum is traversed between two points defined by a host computer:

COMMSON
comms(3) = 0 : REM Initialize the value first

LOOP

IF POS>COMMS(2) THEN PULSE = -COMMS(3)

IF POS<COMMS(1) THEN PULSE = COMMS(3)
COMMS(4) = POS

ENDL

The program is a simple continuous loop. The drum will be driven back at forth between
point specified by COMMS(2) and COMMS(1) at a speed proportional to the rotation of
the drum (measured using an encoder on the drum). The following ratio is specified by
the variable COMMS(3). These values can be changed at any time by sending data
packets from the host computer and are automatically made available to the MINT
program.

MN1260

12-4 7/98

Example 2:

COMMSON

comms(1) = 0
LOOP

command = comms(1)

IF command <> 0 DO

IF command = 1 THEN SP.1 = comms(2):MOVEA.1 = comms(3):GO.1:PAUSE IDLE.1

IF command = 2 THEN SP.1 = comms(2):MOVER.1 = comms(3):GO.1:PAUSE IDLE.1
IF command = 3 THEN HM.1 = comms(4):PAUSE IDLE.1

ENDIF

comms(1) = 0 : REM Send Ack back to host

ENDL

In this example, the host will transmit a command in comms(1). The data for the move
type is held in indexes 2 to 4. When the moves is complete, the command is set to zero.
This acts as an acknowledgement to the host.

Similarly, the host can read the position of the drum by reading the value of COMMS(4),
which is updated once per loop (approximately every 10mS). The communications
routines ensure that valid data is available to both MINT and host computer.

12.3 Read and Writing Data from a Host
In order to read from a location on a controller or write to a location, a datapacket is sent
from the host. This is made up of ASCII characters, including control characters. In order
to send a number, this is transmitted as a string, for example “1234.5”. All control
characters are shown in the shaded boxes.

MN1260

MN1260 12-57/98

12.3.1 Writing Data

The host sends the following data packet to write information to the card.

Reset: EOT (04H)

Card ID: ASCII character 0-9;A-F; set by axis switch on card

Card ID: Card ID repeated

Start: STX (02H)

Comms address digit 1: ASCII character 0-9; location in COMMS array
M.S. digit

Comms address digit 2: ASCII character 0-9; location in COMMS array
L.S. digit

Data field: Up to 60 characters, decimal format, comma
separated, for example: ì1234,45.6,-23.4î

End: ETX (03H)

Checksum: 1 byte, XOR of everything after (but not including)
STX, up to and including ETX

Note: M.S.: most significant; L.S.: least significant

Note that the card ID and the comms address are both ASCII values. To write to comms
address 12, the user would send the ASCII character 1, followed by the ASCII character 2.

The card will respond with an ACK (06H) or a NAK (015H), within 50mS of receipt of
checksum. A NAK will be sent if the data field contains an invalid string, or the
checksum is incorrect. The card ID is set by the 4 way address switch on the card.

The data may be comma separated where each data value will load into subsequent
comms addresses. For example, if the data string “10,20,30” is sent to comms address 10,
address 10 will contain 10, address 11 will contain 20 and address 12 will contain 30.
Note that the total data length field must not exceed 60 characters.

12-6 7/98

12.3.2 Reading Data

The host sends the following data packet to read data:

Reset: EOT (04H)

Card ID: ASCII character 0-9;A-F; set by axis switch on card

Card ID: Card ID repeated

Start: STX (02H)

Comms address digit 1: ASCII character 0-9; location in COMMS array M.S. digit

Comms address digit 2: ASCII character 0-9; location in COMMS array L.S. digit

End: ENQ (05H)

The card will reply with the following data packet:

Start: STX (02H)

Comms address digit 1: 0-9; location in COMMS array M.S. digit

Comms address digit 2: 0-9; location in COMMS array L.S. digit

Data field: Up to 60 characters, decimal format

End: ETX (03H)

Checksum: 1 byte, XOR of everything after (but not including) STX,
up to and including ETX

The reply will be sent within 50mS of receipt of the checksum. A NAK will be sent if the
comms address is invalid.

12.3.3 Special Location

Communication address 00, is used for special purposes. Writing to location 00 will
enable the host to abort program execution. Reading location 00 will return an error
status.

MN1260

12-77/98 MN1260

12.3.3.1 Aborting Program Execution

The abort character (Ctrl-E) is used in the protocol and could appear at any time during a
checksum. Therefore, when COMMSON is executed, Ctrl-E will not be active in the
normal sense.

To abort the program, first send a null data field to special communications location 00:

Reset: EOT (04H)

Card ID: ASCII character 0-9;A-F; set by axis switch on card

Card ID: Card ID repeated

Start: STX (02H)

Comms address digit 1: ASCII character 0

Comms address digit 2: ASCII character 0

End: ETX (03H)

Checksum: 1 byte, XOR of everything after (but not including) STX,
up to and including ETX

The controller will revert to normal non-protected mode, so that Ctrl-E will cause an
abort. COMMSOFF can also be used to revert back to the non-protected mode.

The checksum for the null data packet is ETX.

cTERM for DOS can be used to automatically send the data packet by
pressing Shift-F8 and selecting the required card.

12.3.3.2 Program Status

To allow the host to detect an error on the slave controller, reading location 00 will return
the status of the error and whether the controller is stepper or a servo controller. The
controller will return the following data packet:

Start: STX (02H)

Error 0; No Error, 1; Error

Controller Type 0; Servo, 1; Stepper

End: ETX (03H)

Checksum: 1 byte, XOR of everything after (but not including) STX,
up to and including ETX

The controller type byte can also be used to detect whether the card is up and running or
not.

12-8 7/98

12.4 Limitations of Use
INKEY and INPUT should not be used when MINT is in protected communications mode
since they will take bytes from the incoming data packet, corrupting it, unless TERM is
used it direction all terminal I/O to the LCD keypad and display.

12.5 PC Library Routines
Sample source code is provided with the installation disk for integration into C
applications. Alternatively, the MINT Interface Library can be purchased which provides
the necessary Windows libraries for 3.1, 95 and NT, compatible with most of the common
programming development tools.

Using the Host Computer Communications facility in MINT (COMMSON keyword), a
host computer can communicate with MINT over the serial port, using a protected
protocol. Two example programs are given, one written in ‘C’ and the other written in
QBasic as supplied with MS-DOS 5.0. These provide two functions which allow you to
send and receive data to and from the controller. Both programs are available on the
accompanying Applications and Utilities diskette in the following files

COMMSON.C: C Routines found in CLIB sib-directory

COMMSON.BAS QBasic Routines found in BASICLIB sub-directory

Although MINT does not support floating point numbers as such, instead using scaled
integers, floats are used within the example programs. Care must be taken that the
floating point numbers are not converted to exponent form for transmission.

12.5.1 C Interface

The C source provides the necessary routines to read and write data with the following
features:

• Retry a maximum of 5 times

• Re-transmit on a checksum error

• Floating point numbers as the default data type

A serial port interface, written in Borland Turbo C, can be found on the enclosed
applications diskette in the CLIB directory. The following functions are used in the
COMMS routines to access the serial port buffer:

void flushSerialPort(void)

Flush serial port or serial port buffer

int getCharacterFromSerialPort(void)

MN1260

12-97/98

Read the next character from the serial port or serial port buffer in the range of 0 to 255.
It is assumed that a time-out feature has been built into the function and the function will
return -1 if timed out.

void serialCharacterOutput(int)

Transmit a character over the serial port.

12.5.1.1 Reading and Writing Data

Data is written to the controller through the function commsWrite, which has the
following prototype:

int commsWrite(int card, int index, double value);

The parameters are:

card Card address 0 to 15

index Index of comms address, 0 to 99

value Value to be written

The function will return one of the following values:

0 Time-out

1 Transmitted OK

Example:

returnValue = commsWrite(0, 10, 10.5)

Write 10.5 to index 10 on card 0, ie. COMMS(10) = 10.5

Data is read from the controller using the function commsRead, which has the following
prototype:

int commsRead(int card, int index, double *value);

The parameters are:

card Card address 0 to 15

index Index of comms address, 0 to 99

value Value, passed by reference, that is read

MN1260

12-10 7/98

The function will return one of the following values:

0 Time-out
1 Transmitted OK

Example:

returnValue = commsRead(1, 2, &value);

Read COMMS(2) from card 1.

The source code can be found on the enclosed applications diskette in the COMMSON
directory.

12.5.2 MS-DOS 5.0 QBasic Interface

The Basic interface has been written using QBasic as supplied with MS-DOS 5.0. It
should be possible to convert the program for other types of structured Basic. The
routines have the following features:

• Retry a maximum of 5 times

• Re-transmit on a checksum error

• Interrupt driven serial port

• Addresses card 0 only, although addressing other cards is an easy amendment to the
software

12.5.2.1 Reading and Writing Data

Data is written to the controller using the writeData function which accepts the following
parameters:

letterBox Index of comms array, 0 to 99, to write

dataValue Value to be written

The function will return one of the following values:

0 Time-out

1 Transmitted OK

Example:

returnValue = writeData(10, 200)

Write 200 to COMMS(10).

MN1260

12-117/98

Data is read from the controller using the readData function which accepts the following
parameter:

letterBox Index of comms array, 0 to 99, to read

The value read from the controller is passed to the global variable dataValueReturned.

The function will return one of the following values:

0 Time-out

1 Transmitted OK

Example:

returnValue = readData(1)

Read comms address 1 (COMMS(1)).

An example of use is included in the main body of the program.

MN1260

12-12 7/98MN1260

13-17/98

13. MINT/3.28

MINT/3.28 is an ASCII based protected protocol derived from ANSI x3.28, implementing
a subset of the Interpolation command set. MINT/3.28 can be used in place of MINT on
standard controller cards. It is suitable as a slave motion control system, where the slave
responds to immediate commands from a host computer. The slave cannot execute its
own program.

The communication protocol caters for the 3 motion instruction types that MINT uses.
These are:

• Write to a motion variable

• Read a motion variable

• Issue a command

All MINT keywords are limited to their two letter abbreviation. See section 13.9 for a
complete list of MINT motion keywords that are supported.

The system is set-up as a master/slave configuration, where the host computer acts as the
master, and the controller cards are the slaves. The slaves will tri-state their output
drivers (RS485) unless they are requested to transmit information to the host computer.
This implies that the host computer can talk to only one slave at any one time. It is
therefore up to the master to ensure that it does not transmit data to another slave before
receiving a reply from the previous slave, otherwise there may be contention on the line.

‘C’ library routines, for use on a PC, have been provided and can be found on the
accompanying Applications and Utilities diskette in the MINT328 directory. These should
provide an adequate interface to MINT/3.28.

13.1 Serial Port Configuration
The serial port is configured for:

• 9600 Baud

• 8 data bits

• no parity

• 1 stop bit

A typical system consists of a number of controller cards communicating with a host
computer over a multi-drop full duplex RS485 link, in a master/slave arrangement. RS232
may also be used where there is only one slave card.

MN1260

13-2 7/98MN1260

13.2 Data Packet Structure
For each instruction, the host transmits a data packet made up of the following elements:

Reset: EOT (04H) Start of Header

Drive ID: Card number followed by the axis number, each digit repeated.

Start: STX (02H) Start of data. Used for Write

MINT Keyword: 2 letter abbreviated keyword.

Data: Data where applicable

End ETX (03H) End of data packet

Checksum: byte checksum.

All control characters are shown in the shaded boxes. Each instruction type data packet is
explained in more detail in the following sections.

13.2.1 Reset: EOT

The reset byte, EOT, instructs the slave of incoming data and to discard any data that may
be in its buffer, should it have received an incomplete data packet.

13.2.2 Drive ID

The Drive ID corresponds to the Card Address (0 to 9; A to F) as the first digit (repeated),
followed by the Axis Number (repeated). The Axis Number is interpreted as follows:

Axis Number Axis

0 X

1 Y

2 Z

3 X & Y

4 X & Z

5 Y & Z

6 X, Y & Z

13-37/98 MN1260

To send data to the Y axis on card 2, the following would be sent:

Byte ASCII Value (in HEX) Description

2 32 Card Address

2 32 Card Address

1 31 Axis Number

1 31 Axis Number

13.2.3 MINT Keyword

The MINT keyword is transmitted in its abbreviated form i.e. two letter. A complete list
of the MINT keywords supported is shown in section 13.9. The keywords can be in either
upper or lower case.

13.2.4 Data

A data field will only be sent for write instructions (see section 13.4: Writing Data). The
data field is represented in its ASCII format. For example, 100.5 would be represented
by:

Character ASCII Value

1 31

0 30

0 30

. 2E

5 35

The data field can contain any number within the bounds of MINT scaled integers. The
maximum number of characters for a number will therefore be 12 and would correspond
to the number -8388607.996. Note that the maximum size of the number will change
depending upon the scale factor set. If for example the scale factor (SF keyword) is set to
500, the number of characters will be 9 (corresponds to: -16777.996).

13-4 7/98MN1260

For data fields which contain more than one number (for instance vector motion) the
string of numbers must be separated by commas. For example, the data field for a vector
move of 10,20, would be represented by:

Character ASCII Value

1 31

0 30

, 2C

2 32

0 30

13.2.5 End of Data: ETX, ENQ

Each data packet is terminated by a single byte. These are:

Byte Instruction

ETX (03H) Write

ENQ (05H) Read

ETX (03H) Command

The ASCII hex value is shown in brackets.

13.2.6 Checksum

A checksum is appended to the end of the data packet for a write and command
instruction only. The checksum is the exclusive OR of all the bytes received between the
MINT keyword and the terminating byte, inclusive. The checksum will ensure that all
data received by the slave is not corrupted.

13-57/98 MN1260

13.3 Slave Reply
When the slave receives the data, it will transmit, in the case of a command or write
instruction, an ACK (06H). For a read instruction, data is transmitted to the master. If for
any reason an error occurs, a NAK (15H) will be transmitted. An error can be any one of
the following conditions:

13.3.1 MINT/3.28 Error Codes

Error Code Error

1 User Abort on slave

2 Maximum following error exceeded

3 Limit switch error

4 Variable value out of range

5 Unknown Command

6 Motion already in progress

7 Servo power is off

8 Communication or checksum error

9 Invalid axis number given

10 Reserved

11 External error

12 Invalid parameters

The error can be interrogated by reading back the error code through the keyword ER.
Note that errors 1 to 3 and 11 are fatal errors and must be cleared through use of the reset
command, RE, or the cancel command, CN. If there is no error, ER will return 0.

The slave will send its reply within 30ms of receipt of the data packet from the master. If
the master does not receive a reply, it must assume a NAK.

13-6 7/98MN1260

13.4 Writing Data
The master sends the following data packet to the slave:

Reset: EOT (04H)

Drive ID: Card number followed by the axis number, each digit
repeated. (see below)

Start: STX (02H)

MINT keyword: 2 letter abbreviated MINT keyword.
Upper or lower case.

Data Field: Up to 60 characters

End: ETX (03H)

Checksum: byte representing the exclusive OR of all the bytes
between the MINT keyword and ETX inclusive.

The slave will reply with either an ACK or a NAK, within 30ms of receipt of the
checksum. If the master does not receive a reply, it must assume a NAK. A NAK will be
sent for any of the error codes 1,2,3,4,5,6,7,8,9,11 (see section 13.3.1)

13.5 Reading Data
When requesting data from the slave, the master sends the following data packet:

Reset: EOT (04H)

Drive ID: Card number followed by the axis number, each digit
repeated.

Start: STX (02H)

MINT keyword: 2 letter abbreviation

Data: Data where applicable

End: ENQ (05H)

13-77/98 MN1260

The slave will reply with the data packet:

Start: STX (02H)

MINT keyword: 2 letter abbreviation, always in lower case.

Data Field: Up to 60 characters

End: ETX (03H)

Checksum byte representing the exclusive OR of all the bytes
between the MINT keyword and ETX inclusive.

The reply will be sent within 10 milliseconds of receipt of the ENQ byte. A NAK will be
sent if the MINT keyword cannot be understood (error code 5), ie it is corrupted. If no
reply is received, a NAK must be assumed.

The data field for a read instruction is used to cope with the keyword PEEK/PK. As well
as sending the keyword, the address of the option slot must also be sent. The controller
will reply with the contents of the address. The data field is also used for formatting the
return data. By default, if a read datapacket requests the data from more than one axis, the
values are bitwise-ANDed together. The following characters can be used in the data field
which affect the formatting of the return data:

Code Formatting

| (vertical bar) The results are bitwise-ORed together

, (comma) The results are comma separated

13.6 Commands
Command data packets are the same as write data packets, but with no data. The master
will therefore issue the following data packet for a command:

Reset: EOT (01H)

Drive ID: Card number followed by the axis number, each digit
repeated

Start: STX (02H)

MINT keyword: 2 letter abbreviation

End: ETX (03H)

Checksum: byte representing the exclusive OR of all the bytes between
the MINT keyword and EOT, inclusive.

13-8 7/98

The slave will reply with either an ACK or a NAK. The reply will be sent within 10
milliseconds of receipt of the checksum. A NAK will be sent for the error codes
1,2,3,5,6,7,8,9,11 (see section 13.3.1).

13.7 Buffered Motion Commands
MINT/3.28 will accept and set-up the next motion command when a move is in progress.
This is particularly useful for contouring, or where two moves must be executed in rapid
succession. For example:

VR 10,20

VR 12,21

Any further move instructions cannot be accepted until the first move to position 10,20 is
completed. If any move instruction is received, the slave will reply with a NAK. Reading
the error keyword will return the error code for “motion in progress”.

During contoured motion, it is important to ensure that the next move is always in the
slave’s buffer. Therefore the host must periodically check the move pending flag (MP)
and immediately send the next move when it is cleared.

It is however acceptable to communicate with the slave while contoured moves are in
progress. A typical function is interrogating position to update an operator display.

13.7.1 The GO Command

The GO command is not required when a move is setup since this will be handled
automatically. When the previous move is complete, the new move will be executed.

MN1260

13-97/98 MN1260

13.8 MINT/3.28 Example
Assuming that the system has already been set up, a relative move of 100.5, 20.3 to slave
number 1 on axes 0 and 1 respectively, will require the following data packets:

In MINT code this is:

MR[0,1] = 100.5,20.3 : GO[0,1]

In MINT/3.28 this translates to :

Master: “MR[0,1] = 100.5,20.3”

Character ASCII Value (in hex)

EOT 04

1 31

1 31

3 33

3 33

STX 02

M 4D

R 52

1 31

0 30

0 30

. 2E

5 35

, 27

2 32

0 30

. 2E

3 33

ETX 03

?? (checksum value)

Slave Reply: (assume everything is OK)

ACK 06

MN126013-10 7/98

A1 Analog input 1 IR Move increment relative
A2 Analog input 2 JG Speed control
A3 Analog input 3 KF Velocity feedforward gain
AB Abort KI Integral gain
AC Acceleration KR Integral gain range
AD Auxiliary DAC KV Velocity feedback gain
AT Acceleration Time LM Limit status
AX Tuning output control LT Servo loop time
BA Home backoff MA Move absolute
BF Boost output off MD Mode of motion status
BO Boost output on MF Maximum following error
CA Circle absolute MP Pending mode of motion status
CD Card address MR Move relative
CF Configure axis OF Offset on software gearbox
CL Current Limit OT Digital outputs
CN Cancel Ox Digital outputs
CO Contouring on PK Peek option board location
CR Circle Relative PO Poke option board location
CT Contouring off PS Axis position
DC DAC output PU Software gearbox on external timer
DF Set parameters to default PV Pulse velocity
DL Disable limits RE Reset
DM Demand output level SC Servo on to current position
EB Enable output control SF Scale factor
EI Error input status SO Servo off
EL Enable Limits SP Speed
EN Encoder value SS Stop input problem
ER Error status ST Stop motion
EW Encoder wrap SV Servo on to previous position
FA Axis to follow TI Timer input value
FE Following error TQ Torque control
FL Encoder following ratio VA Vector absolute
FQ Frequency output control VL Velocity feedback
GN Proportional Gain VN Firmware version number
HM Home control/input status VR Vector relative
HS Home speed WR Timer wrap value
IA Move increment absolute XI Expanded I/O
ID Idle status Xx Expanded I/O
IN Digital inputs ZR Zero position
Ix Digital inputs ZZ Status information

13.9 MINT/3.28 Supported Keywords

13-117/98

13.10 MINT/3.28 C Library Routine for Host Computer
Sample source code is provided with the installation disk for integration into C
applications. Alternatively, the MINT Interface Library can be purchased which provides
the necessary Windows libraries for 3.1, 95 and NT, compatible with most of the common
programming development tools.

The sample code gives the following functions:

• Writing to a motion variable

• Reading a motion variable

• Issuing a command

The routines have the following features:

• Retry a maximum of 5 times

• Re-transmit on a checksum error

• Floating point numbers as the default data type

The source code is available on the enclosed applications diskette in the directory CLIB
(filename MINT328.c). A serial port interface, written in Borland Turbo C, can be found
on the enclosed applications diskette in the SERIAL directory. The following functions
are used in the MINT/3.28 routines to access the serial port buffer:

int getccb(void)

Read the next character from the serial port or serial port buffer in the range of 0 to 255.
If no byte is available, getccb must return -1.

void SerialOut(char)

Transmit a character over the serial port.

13.10.1 Writing Data

A motion variable is written to using the function MINT328Write which has the following
prototype:

int MINT328Write(char *cardAxis, char *keyword, char *dataValue);

The parameters are:

cardAxis Card address 0 to 15, followed by axis

keyword Abbreviated keyword

value Value to be written (string)

MN1260

13-12 7/98

The functions can be easily re-written to accept floating point numbers etc.

The function will return one of the following values:

6 (ACK) OK

21 (NAK) Transmission Problem

-1 Timeout

Example:

returnValue = MINT328Write(“0011”, “SF”, “1000”);

Set the scale factor on card 0, axis 1 to 1000.

13.10.2 Reading Data

A motion variable is read using the MINT328Read function which has the following
prototype:

int MINT328Read(char *cardAxis, char *keyword, long *dataValue);

The parameters are:

cardAxis Card address 0 to 15, followed by axis

keyword Abbreviated keyword

value Value to be read, passed by reference as a long.

The function will return one of the following values:

6 (ACK) OK

21 (NAK) Transmission Problem

-1 Timeout

Example:

returnValue = MINT328Read(“1100”, “PS”, &value);

Read the position of axis 0 on card 1. The value will be returned as a scaled integer (see
section 4 for further details on scaled integers).

MN1260

13-137/98

13.10.3 Issuing a Command

A command is issued using the MINT328Command function which has the following
prototype:

int MINT328Command(char *cardAxis, char *keyword);

The parameters are:

cardAxis Card address 0 to 15, followed by axis

keyword Abbreviated keyword

The function will return one of the following values:

6 (ACK) OK

21 (NAK) Transmission Problem

-1 Timeout

Example:

returnValue = MINT328Command(“0066”, “AB”);

Abort all 3 axes on card 0.

MN1260

13-14 7/98MN1260

14-17/98 MN1260

14. MINT Execution Speed
The following code was used for the test procedure.

TIME = 0

FOR a = 1 to 1000

<code to test here>

NEXT

? TIME

The time in brackets is the time taken to perform the loop. The time to perform the
operation is shown below in milliseconds. Note: that where true or false is shown in
brackets, this means that the expression evaluated to either true or false. The time taken
to perform a single operation, or set of operations, is calculated as:

(time to loop with test code - time to loop with no code) / 1000

Timings were taken using a 16Mhz Servo Controller

Code Section Time (ms)

No code, just loop 0.3

MR = 1000 1.05

MR[1] = 1000 1.11

MR.1 = 1000 0.92

MR = 1000,1000 1.79

MR = c(d),c(d) 3.0

VR = 1000,2000 4.5

VR = c(b),c(d) 5.84

SP = 2,2,2 2.43

SP = 2; 1.95

SP[0,1,2] = 2,2,2 2.7

b = POS 0.8

b = POS[1] 1.33

b = POS.1 0.89

IF IN1 (false) 0.66

IF IN1=1 (false) 1.38

OUT1 = 1 0.53

b = a 0.47

b = a * 2.5 1.18

14-2 7/98MN1260

Code Section Time (ms)

b = a / 2.5 1.41

GOSUB test 0.55

IF !IN0 (false) 0.68

IF IN0=0 (false) 1.37

FLY = 1 1.72

MASTERINC = 100 0.96

GO 1.71

GO.0 1.71

STOP[0,1] 0.94

STOP.1 0.60

b = IDLE[0,1] 1.62

Notes:

• Timings were taken when the controller was idle. If a 2 axis positional move is being
performed, the timings will increase by about 15 to 20%.

• AXES[0,1,2] is assumed throughout the test.

• Process MINT on a EuroSystem controller was used throughout the test.

14.1 Improving Execution Speed
There are a number of areas to look at in order to improve program execution speed.

14.1.1 Unnecessary use of Square Brackets

Consider the following:

AXES[0,1]

MOVEA[0,1] = 100,200 : GO[0,1]
PAUSE IN1

MOVEA[0] = 200 : GO[0]

14-37/98 MN1260

MINT will already assume that axes 0,1 exist by definition of the AXES command at the
top of the program. The program can be replaced by:

AXES[0,1]

MOVEA = 100,200 : GO
PAUSE IN1

MOVEA = 200 : GO[0]

14.1.2 Optimizing Logical Expressions

In MINT, if an expression evaluates to 0, it is considered false. Any non-zero evaluated
expressions are considered true. The following logical expressions can be optimized:

IF IN1 = 1 THEN a = 1

can become:

IF IN1 THEN a = 1

IF IN0 = 0 THEN b = 2

can become:

IF !IN0 THEN b = 2

Both of these expressions will evaluate some 10-20% quicker.

IF IN0 = 1 OR IN1 = 1 THEN c = 3

can become:

IF IN AND 011 THEN c = 3

Care must be taken when using the AND and OR keywords since AND and OR (plus their
abbreviated counterparts, & and |) are bitwise operators. Therefore:

IF (IN & 4) AND (IN & 8) THEN OUT1 = 1

will always evaluate to false. The expression must be changed to:

IF (IN AND 12) = 12

14-4 7/98MN1260

14.1.3 Removing Blank Lines

Although MINT is semi-compiled, blank lines are still interpreted allowing MINT to
maintain line numbers in case of an error. Removing blank lines can go some to help
increasing program execution. Note that the SQUASH utility is useful for this function.

14.1.4 Performing More Time Intensive Code Outside to Dead Time

Often MINT can be left waiting for an input after which it must perform a series of
instructions with a certain time. Consider the following:

LOOP

PAUSE IN1
PAUSE !IN1 : REM Wait for falling edge

MOVER = length * factor : REM Perform an index operation

GO

ENDL

It is required that on seeing the input, the machine starts moving as quickly as possible.
This can be achieved as follows:

LOOP

MOVER = length * factor : REM Setup the move

PAUSE IN1
PAUSE !IN1 : REM Wait for falling edge

GO : REM Tell move to GO

ENDL

As can be seen, the move is setup in the deadtime of the loop. The move should begin
some 4-6ms quicker.

14-57/98 MN1260

14.1.5 Turning Redundant Axes Off

In a 2 axes servo system using EuroSystem, the third axes of stepper is still performing
some background calculations. By turning this axis off, program execution speed should
increase by about 10%. An axis can be turned off by using the CONFIG keyword:

CONFIG[2] = _off

will turn axis 2 off.

14.1.6 Replacing Single Axis Reference with Dot

A single axis reference using square brackets can be replaced with the dot syntax. For
example:

IF POS[1] > 1000 THEN OUT1 = 1

can be replaced by:

IF POS.1 > 1000 THEN OUT1 = 1

this not only saves on code space but is about 20% quicker to execute.

SQUASH can be used to replace all single axis reference with the dot syntax.

14-6 7/98MN1260

15-17/98 MN1260

15. Manuals and Software for MINT Products
Product Shipped with the Related Manuals Related Software

Following Manuals

EuroSystem & MN1254, MN1260 MN1259, MN1263, SW1250 (shipped with MN1254)
EuroStep MN1264, MN1265, MN1266 SW1259 (option at extra charge)

EuroServo/3 MN1256, MN1260 MN1259, MN1263, SW1250 (shipped with MN1256)
MN1264, MN1265, MN1266 SW1259 (option at extra charge)

SmartStep/3 MN1251, MN1260 MN1259, MN1263, SW1250 (shipped with MN1251)
MN1264, MN1265, MN1266 SW1259 (option at extra charge)

SmartMove MN1250, MN1260 MN1259, MN1255, SW1250 (shipped with MN1250)
MN1266 SW1259 (option at extra charge)

NextMove PC MN1257, MN1261 MN1259, MN1255, SW1257 (shipped with MN1257)
MN1266 SW1259 (option at extra charge)

NextMove BX MN1258, MN1261 MN1259, MN1255, SW1250 (shipped with MN1258)
MN1266 SW1259 (option at extra charge)

CAN Peripherals (ioNodes) MN1255

24 I/O Expansion MN1263

Memory Card Interface MN1264

3 Channel Encoder MN1265

Encoder Splitter MN1266

Product Manuals
Product Code Description

MN1250 SmartMove Installation Manual

MN1251 SmartStep/3 Installation Manual

MN1254 EuroSystem & EuroStep Installation Manual

MN1255 CANbus Peripherals Installation and Programming Manual

MN1256 EuroServo/3 Installation Manual

MN1257 NextMove PC Installation Manual

MN1258 NextMove BX Installation Manual

MN1259 MINT Interface Library – C Programming and Host Interface Libraries for MINT

MN1260 MINT – Programming Manual (for SmartMove, EuroSystem, SmartStep)

MN1261 MINT for NextMove – Programming Manual

MN1262 MINT for ServoNode – Programming Manual

MN1263 24 I/O Expansion Installation Manual

MN1264 Memory Card Installation Manual

MN1265 3 Channel Encoder Installation Manual

MN1266 Encoder Splitter Installation Manual

MINT Software
Product

Description
Code

SW1250 MINT Programmer’s Toolkit, serial version

SW1257 MINT Programmer’s Toolkit (CD-ROM)

SW1259 MINT Interface Library
(latest manual included on CD-ROM)

PR Material
Product

Description
Code

FL1250 SmartMove

FL1257 NextMove PC

FL1258 NextMove BX

PR1250 MINT Control Products CD

15-2 7/98MN1260

I-17/98

#
#: 10-2
#FASTPOS: 5-13, 10-3
#IN0 .. #IN7: 5-11
#ONERROR: 5-10, 8-1, 10-4
#STOP: 5-10, 6-43, 10-5, 10-158
$: 10-1

A
ABORT/AB: 10-5. See also ENABLE
ABS: 4-20, 10-6
Absolute move: 6-9

MOVEA: 10-116
Absolute value of number: 4-20
ACCEL: 6-9
ACCEL/AC: 10-7
Acceleration: 6-9
ACCELTIME/AT: 10-8
Analog inputs: 6-38, 10-10

joystick: 6-38
Analog output: 10-14

DAC: 10-45
ANALOGUE1/A1: 10-10
AND: 4-20
AND/&: 10-11
ANSI standard 3.28: 1-8
ANSI x3.28: 12-2, 13-1
Applications and Utilities diskette: 4-19, 13-1
Array data: 4-8. See also MINT Host Computer
Communications. See also RELEASE.
See also DISPLAY

advanced use of: 4-12
COMMS array: 5-24
loading, LOAD: 10-108
reserving space for: 4-8

DIM: 4-8, 10-49
saving: 10-148

SAVE: 10-148
saving and loading of: 4-10

File Format: 4-14
File format restrictions: 4-15

using semicolon to initialize array data: 4-9
Array variables: 4-9
ASCII: 10-34
ASCII character: 4-2
AUTO: 1-4, 10-12
AUX/AX: 10-13
AUXDAC/AD: 10-15
AXES: 1-4, 3-3, 6-6, 10-16. See also Multi-axis syntax
AXISCON: 9, 10-17, 10-47, 10-177

B
BACKOFF: 6-14, 10-82
BACKOFF/BA: 10-18
BASIC: 1-1, 4-5
BAUD: 10-19
BEEP: 10-20
BEEPOFF: 10-21
BEEPON: 10-21
Begin motion

GO: 10-78
BINARY: 5-16, 10-22, 10-136
Binary Numbers: 4-1, 10-22. See also Numbers.
See also BINARY
Bitwise operators: 4-21

AND/&: 10-11
OR/|: 10-124

Blended moves: 6-2, 6-3
BOL: 10-22
Boost output

turning off, BOOSTOFF: 10-23
turning on, BOOSTON: 10-24

BOOSTOFF: 10-23
BOOSTON: 10-24
Buffers: 1-3, 9-1. See also Editor. See also Password
protection

configuration: 1-3
program: 1-3

Buzzer: 5-17

C
CAM: 10-25
CAM Profiling: 6-22

cam table: 6-24, 10-25, 10-30
CAMEND: 10-29
master position: 6-22, 6-25

master position table: 6-22, 6-24
master reference: 10-112

defining: 6-24
reading current segment: 10-28
starting: 10-25
synchronized with the fast interrupt: 6-27

Cam Tables: 6-24
defining multiple tables: 6-27

CAMA: 10-25
CAMEND: 10-29
CAMINDEX: 10-26, 10-28
CAMSTART: 10-30
CANCEL: 8-4
CANCEL/CN: 10-31
CAPTURE: 7-9, 7-10, 10-14, 10-32, 10-33, 10-46
Card address: 10-33
CARD/CD: 10-33

INDEX

I-2 7/98

Character constants: 4-2, 4-3, 5-21
CHR: 10-34
CIRCLEA: 6-8
CIRCLEA/CA: 10-34
CIRCLER: 6-8
CIRCLER/CR: 10-37
Circular interpolation: 6-8
Clear the terminal screen: 10-38
Clearing the serial port buffer: 5-21
CLS: 10-38
clutch distance: 6-18, 6-21
Command line: 1-5
Comments

REM: 10-137
Commissioning: 10-48
COMMS: 5-23
COMMS array: 12-3
Comms Protocol: 1-8, 5-20, 5-23, 10-39

abort: 12-7
Aborting Program Execution: 12-7
applications diskette: 12-8
Limitations: 12-8
PC interface using C: 12-8
PC interface using QBasic: 12-10
Program status: 12-7
Reading data: 12-6
Writing data: 12-5

COMMSOFF: 10-39, 12-3, 12-7
COMMSON: 5-24, 10-1, 10-12, 10-39, 10-50, 12-1, 12-2,
12-3, 12-7, 12-8
CON: 9-1, 9-4
Conditional statements: 4-20, 5-1. See also Nesting

IF .. THEN: 5-1, 10-87
IF block structure: 5-1

levels of nesting: 5-2
IF DO block structure: 10-86
PAUSE: 5-1, 5-3, 10-128

CONFIG: 7-1, 7-5
CONFIG/CF: 10-40
Configuration file: 14, 1-4, 7-7
Configuring system

CONFIG: 10-40
Constant numbers: 4-2
Constants: 4-2
CONTOFF: 6-10, 10-41
CONTOFF/CO: 10-41
CONTON: 6-10
CONTON/CT: 10-42
Contouring: 6-10, 10-41. See also CONTOFF.
See also CONTON. See also Interpolated moves
COS: 4-20, 4-22, 10-43
cTERM: 9, 1-1, 1-5, 4-10, 4-18, 5-21, 5-24, 6-41, 7-8,
9-6, 10-108, 10-109, 10-137, 10-148, 10-149, 10-168, 12-7

Ctrl-E: 1-6, 5-20, 5-24, 9-7, 10-1, 10-12, 10-39, 12-2,
12-7
Current limit

CURRLIMIT: 10-44
CURRLIMIT: 7-4
CURRLIMIT/CL: 10-44

D
DAC output: 10-15
DAC/DC: 10-45
DATATIME: 7-9, 7-10, 10-33, 10-46
Datuming: 6-11, 6-14, 10-18, 10-82

BACKOFF: 10-82
establishing a new position: 6-13, 6-15
HMSPEED: 6-13
HOME: 6-11, 6-12, 10-83
home and limit switches: 6-11, 6-44
home sequence: 6-13
on index pulse: 6-11
order of: 6-14
setting backoff factor: 6-14
setting backoff speed factor: 10-18
setting direction: 6-13, 6-14
setting the speed of: 6-14
setting zero position: 6-15, 10-182
speed of

HMSPEED: 10-82
Debugging: 10-168. See also TROFF. See also TRON
Debugging programs: 10-168
DECEL: 10-9, 10-17, 10-18, 10-46
Decimal numbers: 4-2. See also Numbers
DEFAULT/DF: 10-48
DEL: 9-5
Delay: 10-174
DEMAND/DM: 10-49
Diagnostics: 5-17

DEMAND: 10-49
instantaneous motor demand: 10-49
mode of motion: 6-34

MODE: 10-114
motion error: 5-10, 8-1

ERROR: 10-61
reading limit status

LIMIT: 6-43, 10-106
Digital Input/Output: 6-35, 10-179

'On the Fly': 6-41
I/O expansion: 6-37, 10-179
Interrupts on inputs: 5-11

limitations and restrictions: 5-11
reading of: 6-35

IN: 6-35, 10-89
XIO: 10-179

INDEX

I-37/98

writing to: 6-35
OUT: 6-35, 10-125
XIO: 10-179

Digital servo loop: 10-75
DIM: 4-8, 10-49
DINT: 10-51
DIR: 7-5, 10-41, 10-51, 10-52
DISLIMIT: 5-10, 6-43, 8-5
DISLIMIT/DL: 10-52
DISPLAY: 4-6, 4-16, 10-53
Displaying numbers in binary: 10-22
Documenting source code: 10-143

E
ECHO: 10-54
EDIT: 9-5
Editor: 1-6, 9-1

clearing a program from memory: 9-7
configuration file: 7-7
delete program lines: 9-5
edit line: 9-5, 9-6
editor commands

CON: 9-2, 9-4
DEL: 9-2, 9-5
EDIT: 9-5
INS: 9-7
LIST: 9-7
NEW: 9-7
PROG: 9-8

editor keys: 9-5
Insert a line: 9-7
List the program: 9-7
program and configuration buffers: 9-1
selecting configuration file: 9-4
Selecting program file: 9-8

EINT: 10-55
ELSE: 5-1
ENABLE/EB: 10-55
Encoder: 7-4, 7-6, 10-133. See also Quadrature counts

reading using POS: 10-132
SCALE: 10-150

Encoder Following: 10-138
FOLLOW: 10-69
FOLLOWAXIS: 10-71

Encoder position: 10-56, 10-57
wrap around value: 10-57

ENCODER/EN: 10-56
ENCWRAP/EW: 10-58
END: 8-5, 10-59
ENLIMIT: 5-10, 6-43
ENLIMIT/EL: 10-59
ERR: 8-1
ERRAXIS: 8-1

Error: 8-8
ERR: 8-1

Error Messages: 11-1
Error recovery: 8-5
ERROR/ER: 10-61
ERRORIN: 8-5
ERRORIN/EI: 10-63
Errors: 8-1, 10-62

automatic error recovery using ONERROR: 5-9, 8-1,
8-5, 10-4
cancelling motion error using ERROR: 10-31
determining motion error usins ERROR: 8-1, 10-61
digital outputs: 6-37, 8-4
disabling drives: 10-55
displaying last error LASTERR: 10-105
error handling: 8-1
error messages: 11-1
error recovery

disabling limits: 10-52
enabling limits: 10-59

LED status display: 8-7
limit error: 6-15
reading the last error: 8-3
resetting controller: 10-145

Escape codes: 10-34
Execution: 8-5
Execution speed: 14-1, 14-2

improving: 14-2
EXIT: 5-6, 10-64
External error

setting state of: 10-63

F
Fast interrupt

latching position
FASTENC/FC
FASTPOS/FP
Feedforward gain
File handling

loading
saving

Files
FLY: 6-29, 6-31, 10-66
Flying shear: 6-28

master reference defining: 6-28
Flying Shears: 6-28, 10-67

master reference: 10-112
FOLERR/FE: 10-68
FOLLOW: 6-17, 6-20
FOLLOW/FL: 10-69
FOLLOWAXIS: 6-17, 6-20, 6-24, 6-29
FOLLOWAXIS/FA: 10-71

INDEX

I-4 7/98

Following error: 7-6. See also Maximum following error
maximum following error

MFOLERR: 10-113
reading following error

FOLERR: 10-68
FOR .. NEXT: 5-4, 10-72

levels of nesting: 5-4
Formatted input: 10-96
Formatted output: 5-15, 5-16, 10-107, 10-135
FREE: 9-6
Free memory: 9-1, 9-6
FREQ/FQ: 10-73
Frequency output FREQ: 10-73

G
GAIN: 7-3
GAIN/GN: 10-74
Gearbox. See Software gearboxes
GEARD: 6-20
GEARD/GD: 10-75
GEARN: 6-20
GEARN/GR: 10-76
GO: 3-1, 6-9, 10-78
GOSUB: 5-8, 10-79
GOTO: 10-81

H
Halt program execution: 10-128
HMSPEED: 6-13, 10-18
HMSPEED/HS: 10-82
HOME: 6-11
Home and limit switches: 6-11
HOME/HM: 10-83
Homing: 6-12, 10-83
Host computer communications: 13-1

I
IDLE: 3-4, 6-42, 10-128
IDLE/ID: 10-85
IF .. DO: 5-1, 10-86
IF .. THEN: 5-1, 10-87
IMASK/IM: 10-88
Improving Execution Speed: 14-2
IN: 6-35, 10-89. See Interrupts
IN0/I0 .. IN7/I7: 10-90
INCA: 6-4
INCA/IA: 10-91
INCR: 6-4
INCR/IR: 10-93
Infeed: 6-17, 10-122, 10-138, 10-175. See also Pulse
following

OFFSET: 10-122
WRAP: 10-176

INKEY: 5-20
INKEY/IK: 10-94
INPUT: 5-14, 5-16, 5-20, 10-95
Input and Output: 5-14. See also Digital input/output
Inputs: 6-41. See also Digital input/output
INS: 9-7
INT: 4-20, 10-96
Integer value

INT: 10-96
Integral gain: 7-2

KINT: 7-2, 10-101
Integration range: 7-4

KINTRANGE: 7-4
Interpolated motion: 6-5
Interpolated Moves: 6-4, 6-5. See also Positional control

absolute circular interpolation
CIRCLEA: 10-35

absolute linear interpolation
VECTORA: 10-169

circular Interpolation: 6-8
CIRCLE: 6-8

contouring: 6-8
linear interpolation: 6-6
relative circular interpolation

CIRCLER: 10-37
relative linear interpolation

VECTORR: 10-170
Interrupts: 5-11, 10-3

disabling: 10-51
enabling: 10-55
fast interrupt: 10-66
limitations and restrictions: 5-11
pending interrupts: 10-97
setting a mask: 10-88

Inverter Control: 7-5, 10-51
controlling direction: 7-5

IPEND/IP: 10-97

J
JOG: 6-2
JOG/JG: 10-98
Joystick: 6-38

example program: 4-13

K
Keyboard: 5-14

waiting for key press: 5-3
Keypad

tactile feedback: 10-21
Keypad and display: 5-14, 5-17, 10-100

buzzer: 5-17
defining keys: 10-100
disabling using TERM: 10-160

INDEX

I-57/98

locating the cursor: 10-109
writing to using LINE: 10-107

KEYS: 10-100
KINT: 7-3
KINT/KI: 10-101
KINTRANGE: 7-4, 10-102
KINTRANGE/KR: 10-102
KVEL: 7-3
KVEL/KV: 10-103
KVELFF: 7-3
KVELFF/KF: 10-104

L
Labels: 10-2

GOTO: 10-81
LASTERR: 8-3, 10-105
LCD display: 5-17, 10-107
LED: 8-7
LED status display: 8-7, 10-105

LED keyword: 8-7
LED/LD: 10-105
LIMIT: 6-43
Limit switches. See also Error recovery

disabling
DISLIMIT: 5-10, 6-43, 10-52

enabling: 10-55
ENABLE: 10-55
ENLIMIT: 5-10, 6-43

LIMIT: 6-43, 10-106
LIMIT/LM: 10-106

LINE: 5-16, 10-107, 10-136
Line editor: 9-1
Linear Interpolation: 6-6
LIST: 9-7
LOAD: 4-17, 10-108
Loading programs and data: 10-108
LOCATE: 10-109
Logical operators: 10-11. See also Operators

AND/&: 10-11
NOT/!: 10-120
OR/|: 10-124

LOOP .. ENDL: 5-6, 10-110
Loops: 5-4. See also Nesting

Nesting. See also
continuous loops: 5-6
EXIT: 10-64
FOR .. NEXT: 5-4, 10-72
LOOP .. ENDL: 5-6, 10-110
REPEAT .. UNTIL: 5-5, 10-144
terminating from: 5-7, 10-64
WHILE .. ENDW: 5-5, 10-175

LOOPTIME/LT: 10-111

M
MASTERINC: 6-18, 6-19, 6-20, 10-26, 10-112
MASTERINC/MI: 10-112
Mathematical operators: 4-20
Maximum following error: 7-6. See also MFOLERR

MFOLERR: 10-113
Memory: 9-1

determining free memory: 9-6
out of memory: 11-2

Memory Expansion: 9-2, 10-121
MFOLERR: 7-6, 10-113
MFOLERR/MF: 10-113
Micro stepper

configuring for
CONFIG: 10-40

MINT
execution speed: 14-1

MINT Editor: 9-1
MINT Host Computer Communications: 12-1.
See also COMMSON. See also Comms protocol
MINT Host Computer Protected Protocol: 5-23
MINT Versions: 1-7
MINT/3.28: 1-8, 13-1

applications diskette: 13-1
buffered moves: 13-8
commands: 13-7
GO command: 13-8
reading data: 13-6
status request: 10-182
writing data: 13-6

MOD: 4-20
MODE: 6-34, 8-8
MODE/MD: 10-114
Modular arithmetic: 4-20
Motion: 10-85

checking for idle: 10-85
GO: 10-78
IDLE: 10-85
MODE: 6-34, 10-115

Motion commands: 3-1
Motion error: 8-5
Motion Variables: 3-1, 4-6

range checking: 3-1
Motor demand

DEMAND: 10-49
Motor type: 10-40

CONFIG: 10-40
Move Buffer: 6-9
Move pending: 6-10, 6-41
MOVEA/MA: 10-116
MOVECAM: 8-8, 10-27, 10-79, 10-112, 10-115, 10-150,
10-158

INDEX

I-6 7/98

MOVER/MR: 10-118
Multi-Axis Syntax: 3-2

AXES: 10-16
default using AXES: 3-2
reading more than 1 axis: 3-4
referencing axes: 3-2
using: 3-2
using, to skip axes: 3-2

Multi-drop RS485: 1-1, 1-7, 10-1, 13-1
card address: 10-33

Multi-drop systems: 1-8

N
Nesting: 5-7
NEW: 9-7
NOT: 4-20
NOT/!: 10-120
Numbers: 4-1. See also Operators

binary numbers: 4-1, 4-21
character constants: 4-2, 5-21
constant numbers: 4-2
scaled integers: 4-1

O
OFFLINE: 4-10, 4-11, 4-15, 9-2, 10-50, 10-121
OFFSET: 6-17, 6-18, 6-19
OFFSET/OF: 10-122
ONERROR: 5-10, 8-5
Operators

absolute value
ABS: 4-20, 10-6

bitwise operators
AND/&: 10-11
AND/&, OR/|: 4-20
OR/|: 10-124

Integer value
INT: 4-20, 10-96

logical operators: 10-11
AND/&: 10-11
AND/&, OR/, NOT/!: 4-21
NOT/!: 10-120

mathematical operators
– + / *: 4-20

performing logical operations: 4-21
priority: 4-20
relational operators: 4-21

< > = <= >= <>: 4-21
Option card

reading address space
PEEK: 10-129

writing to address space
POKE: 10-131

OR: 4-20
OR/|: 10-124
Out of memory: 11-2
OUT/OT: 10-125
OUT0/O0 .. OUT7/O7: 10-127
Output Errors On SmartMove

Over current: 8-8
Over temperature: 8-8
Short circuit: 8-8

Outputs: 6-41, 10-125. See also Digital input/output

P
Password Protection: 9-4, 10-137
PAUSE: 5-3, 10-128
PEEK/PK: 10-129
POFF: 10-131
POKE: 10-131
PON: 10-132
POS: 6-13, 10-182
POS/PS: 10-132
Position

latching using fast interrupt: 10-66
reading

POS: 10-132
reading using ENCODER: 10-56
writing

POS: 10-133
Positional control: 6-3

absolute positional control: 6-3, 10-116
correctly for slip: 10-93
incremental positional control: 6-4, 10-118
interpolated moves: 6-5
relative positional control: 10-118
velocity profile: 6-9

ACCEL: 6-9
RAMP: 6-9, 10-140
SPEED: 6-9

Positional error: 7-6
Positional moves. See Positional control

defining new end position: 6-4, 10-91, 10-93
interpolated moves: 10-35, 10-169, 10-170

Positional Resolution: 7-6
quadrature counts: 7-6
SCALE: 7-6, 10-150

Positioning the cursor: 10-109
LOCATE: 10-109

Power to motors: 10-151
Pre-defined constant keywords: 4-3
PRESCALE: 10-134
PRINT: 5-15
PRINT/?: 10-135
Process MINT: 1-7
PROG: 9-8

INDEX

I-77/98

Program buffers: 1-3
Program execution

AUTO: 10-12
debugging: 10-168
delaying: 10-174
RUN: 8-5, 10-147
terminating from program

END: 10-59
terminating using keyboard: 10-12

Program Structure: 2-1
Proportional gain: 7-3

GAIN: 7-3, 10-74
PROTECT: 9-4, 10-137
Protected protocol: 12-1. See also Comms protocol.
See also COMMSON

COMMSON: 10-39
PULSE: 6-15
Pulse Following: 6-15, 10-122. See also Infeed.
See also FOLLOW

PULSE: 6-15, 10-138
PULSEVEL: 10-139
reading follower input: 10-163
stepper controller: 6-15
TIMER: 10-163
velocity of pulse train: 10-140
WRAP: 10-176

PULSE/PU: 10-138
PULSEVEL/PV: 10-139

Q
Quadrature counts: 7-6. See also SCALE

R
RAMP: 6-9
RAMP/RP: 10-140
Reading serial buffer: 10-94
READKEY: 5-17
READKEY/RK: 10-141
Relational operators: 4-20
Relative move

MOVER: 10-118
RELEASE: 4-6, 4-17, 10-143
REM: 10-143
REPEAT .. UNTIL: 10-144

levels of nesting: 5-5
RESET: 6-43, 8-5
RESET/RE: 10-145
Resetting the system: 10-48
RETURN: 5-8, 8-5, 10-147
RS232/485: 5-14
RS485: 1-1, 5-14, 12-1, 13-1
RUN: 8-5, 10-147

S
S ramps: 6-9

RAMP: 6-9
SAVE: 4-17, 10-148
Saving programs and data: 10-148
SCALE: 7-6
SCALE/SF: 10-150
Scaling

example of: 7-6
Separating multiple statement: 10-2
Serial buffer

reading: 10-94
Serial port: 10-19

disabling using TERM: 10-160
setting Baud rate: 10-19

Serial port buffer: 5-20
clearing: 5-5

Servo Loop: 7-2, 10-111
tuning: 10-14

Servo loop gains: 7-2, 7-4, 7-7
current limit

CURRLIMIT: 10-44
integral range

KINT: 10-101
integration range: 10-102

KINTRANGE: 10-102
proportional gain

GAIN: 10-74
setting up: 7-4
velocity feedback gain

KVEL: 10-103
velocity feedforward gain

KVELFF: 10-104
Servo loop time

defining: 10-111
Servo motors

configuring for
CONFIG: 10-40

Servo power: 10-151
power off

SERVOFF: 10-153
power on

SERVON: 10-154
power to current position

SERVOC: 10-151
SERVOC/SC: 10-151
SERVOFF/SO: 10-152
SERVON/SV: 10-154
Setting sysstem parameters: 7-7
Setting up servo loop gains: 7-4
SIN: 4-20, 4-22, 10-155
SmartMove: 9, 4-10, 10-178

INDEX

I-8 7/98

Software Gearbox: 6-17, 6-19, 6-20, 6-21, 10-77
CAM profiling. See
clutch distance: 6-18, 6-21

SPEED: 6-9. See also Velocity
Speed Control: 6-2

JOG: 6-2, 10-98
SPEED/SP: 10-155
Status Display: 8-7, 10-105
Stepper control

BEEPOFF: 10-21
BEEPON: 10-21
frequency output: 10-73

Stepper controller: 6-15
Stepper motors: 10-40

configuring for: 10-40
CONFIG: 10-40

STOP: 3-1, 6-16
STOP Input: 6-42, 10-158

reading input: 10-159
reading value of: 6-42
STOP subroutine: 10-5
STOPSW: 10-159

Stop motion
controlled stop

STOP: 10-157
crash stop

ABORT: 10-5
STOP subroutine: 5-10, 10-5
STOP/ST: 10-157
STOPMODE: 10-158
STOPSW: 6-43
STOPSW/SS: 10-159
Subroutine label: 10-2
Subroutines: 5-8

calling: 5-8, 10-80
defining: 5-8
GOSUB: 5-8, 10-79
interrupt routines: 5-11
labels: 5-8, 10-2
maximum number of in a program: 5-9
RETURN: 5-8, 10-147

System commissioning: 10-13
System Software Configuration: 7-1

T
TAN: 4-20, 4-22, 10-160
TERM/TM: 10-160
Terminal Input/Output: 5-14

associated keywords
BEEP: 10-20
BEEPOFF: 10-21
BEEPON: 10-21

BINARY: 10-22
BOL (Beginning of line): 10-22
CHR: 10-34
CLS: 10-38
INKEY: 10-94
INPUT: 5-16, 10-95
LINE: 10-107
LOCATE: 10-109
POFF: 10-131
PON: 10-132
PRINT: 5-15, 10-135
TERM: 10-160

character constants: 5-21
clearing the serial port buffer: 5-21
controlling use of: 10-160
formatted input: 5-16
formatted output: 5-16
keypad and display: 5-17
positioning the cursor: 10-22, 10-109
reading the serial port buffer: 5-21
serial port buffer: 5-20
write to a line: 5-15

Terminate motion. See also Ctrl-E
controlled stop

STOP: 10-157
crash stop

ABORT: 10-6
Terminate program execution: 1-4, 1-6
Terminating loops: 5-7
Terminating program execution: 1-6. See also Ctrl-E

END: 8-5
Three channel encoder interface board: 10-177
TIME/TE: 10-162
TIMER: 6-16, 10-163
Timer input: 10-163
TIMER/TI: 10-163
Timing program execution: 10-162
Torque Control: 6-1

terminating: 6-1
Torque: 6-1, 10-164

TORQUE/TQ: 10-164
Trapezoidal profile: 6-9
TRIGGER: 6-33, 10-165, 10-166, 10-167
Triggered Moves: 6-33
Trigonometric Functions: 4-22

COS: 10-43
SIN: 10-155
TAN: 10-160

TROFF: 10-167
TRON: 10-168
Tuning servo loop: 10-14

INDEX

I-97/98

U
Uni-directional control. See also Inverter control
User timer: 10-162
User units

setting: 10-150
User variables: 4-5

V
Variable software gearbox: 6-22. See also Cam profiling
Variables: 4-5. See also Numbers. See also Motion
variables

array data
DIM: 10-49
reserving space for: 10-49

associated keywords
DISPLAY: 4-6
RELEASE: 4-6

clearing variables from memory: 4-6, 10-143
clearing variables from memory during runtime: 4-6
declaring user variables: 4-5
displaying defined variables: 4-5, 10-53
motion variables: 4-21

Motion variables. See
non-volatile: 4-6

VECTORA: 6-6
VECTORA/VA: 10-169
VECTORR: 6-6
VECTORR/VR: 10-170
VEL/VL: 10-172
Velocity. See also SPEED

reading using VEL: 10-172
Velocity control: 10-98
Velocity feedback gain: 7-2

KVEL: 7-2, 10-103
Velocity feedforward: 7-2
Velocity feedforward gain

KVELFF: 7-3
Velocity Profile: 6-9. See also S ramps acceleration

ACCEL: 10-7
ACCELTIME: 10-8
RAMP: 10-140

VER: 10-173
Version of MINT: 10-173
Versions: 1-7
VPU: 10-156

W
WAIT/WT: 10-174
WHILE .. ENDW: 5-5, 10-175
WRAP: 6-16, 10-139
WRAP/WR: 10-176

X
XENCODER: 10-18, 10-72, 10-134, 10-177, 10-178
XIO: 10-179
XIO/XI: 10-179
XIO0..7: 10-179
XOUT/XO: 10-181

Z
ZERO: 6-15
Zero position. See also Datuming
ZERO/ZR: 10-182
ZZ: 10-183

INDEX

I-10 7/98

INDEX

© Baldor Electric Company
MN1260

Printed in USA
7/98 Custom 15,000

Worldwide Offices
USA

Baldor Electric Company • P. O. Box 2400 • Fort Smith, AR 72902-2400 USA
Tel: 1 501 646-4711• Fax: 1 501 648-5792 • E-mail: sales@baldor.com

United Kingdom
Baldor Optimised Control • 178-180 Hotwell Road • Bristol BS8 4RP, UK

Tel: 44 (0)117 915 3200 • Fax: 44 (0)117 915 3201 • Web site: www.baldor.co.uk

Europe
Baldor ASR AG • Tel: 41 (0)52 647 4700 • Fax: 41 (0)52 659 2394

Baldor ASR GmbH • Tel: 49 (0)89 90508-0 • Fax: 49 (0)89 90508-491

Australia
Australian Baldor PTY., LTD. • Tel: 61 2 9674 5455 • Fax: 61 2 9674 2495

Singapore (F.E.)
Baldor Electric PTE.LTD. • Tel: 65 744 2572 • Fax: 65 747 1708

www.baldor.com

